Length changes of autoclaved aerated concrete exposed to cyclic wetting and drying
,
 
,
 
 
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
 
 
Publication date: 2015-05-01
 
 
Cement Wapno Beton 20(3) 139-149 (2015)
 
KEYWORDS
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under project No. P105/12/G059.
REFERENCES (28)
1.
M. Skorniewska, G. Zapotoczna-Sytek, Effect of cement type on the properties of cellular concrete. Cement Wapno Beton, 79, 200-206 (2012).
 
2.
L. Kubicar, V. Bohac, V. Vretenar, S. Barta, G. Neuer, R. Brandt, Thermophysical properties of heterogeneous structures measured by pulse transient method. International Journal of Thermophysics 26, 1949-196 (2005).
 
3.
R. Cabrillac, B. Florio, A. L. Beaucour, H. Dumontet, S. Ortola, Experimental study of the mechanical anisotropy of aerated concretes and of the adjustment parameters of the introduced porosity. Constr. Build. Mat., 20, 286-295 (2006).
 
4.
S. Unčík, A. Struhárová, M. Hlavinková, A. Sabová, S. Balkovic, Effect of bulk density and moisture content on the properties of aerated autoclaved concrete. Cement Wapno Beton, 80, 189-196 (2013).
 
5.
A. Łagosz, P. Szymański, P. Walczak, Infl uence of the fl y ash type on properties of autoclaved aerated concrete. Cement Wapno Beton, 78, Special Issue, 22-25 (2011).
 
6.
A. Laukaitis, J. Keriene, D. Mikulskis, M. Sinica, G. Sezemanas, Infl uence of fi brous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products. Constr. Build. Mat., 23, 3034–3042 (2009).
 
7.
C. Karakurt, H. Kurama, I.B. Topçu, Utilization of natural zeolite in aerated concrete production. Cem. Concr. Comp., 32, 1–8 (2010).
 
8.
X. Huang, W. Ni, W. Cui, Z. Wang, L. Zhu, Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr. Build. Mat., 27, 1–5 (2012).
 
9.
W. Wongkeo, P. Thongsanitgarn, K. Pimraksa, A. Chaipanich, Compressive strength, fl exural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials and Design, 35, 434–439 (2012).
 
10.
M. Campanale, M. Deganello, L. Moro, „Effect of Moisture Movement on Tested Thermal Conductivity of Moist Aerated Autoclaved Concrete”. Transport in Porous Media, 98, 125–146 (2013).
 
11.
M. Janz, Moisture diffusivities evaluated at high moisture levels from a series of water absorption tests. Mat. and Struct., 35, 141-148 (2002).
 
12.
M.S. Goual, A. Bali, F. de Barquin, R.M. Dheilly, M. Quéneudec, Isothermal moisture properties of Clayey Cellular Concretes elaborated from clayey waste, cement and aluminium powder. Cem. Concr. Res., 36, 1768–1776 (2006).
 
13.
Z. Pavlík, R. Černý, Determination of Moisture Diffusivity as a Function of Both Moisture and Temperature. International Journal of Thermophysics, 33, 1704-1714 (2012).
 
14.
S. Tada, K. Watanabe, Dynamic determination of sorption isotherm of cement based materials. Cem. Concr. Res., 35, 2271-2277 (2005).
 
15.
O. Koronthalyova, Moisture storage capacity and microstructure of ceramic brick and autoclaved aerated concrete. Construction and Building Materials 25, 879–885 (2011).
 
16.
M. Jerman, M. Keppert, J. Výborný, R. Černý, Moisture and heat transport and storage characteristics of two commercial autoclaved aerated concretes. Cement Wapno Beton, 78, 18-29 (2011).
 
17.
M. Jerman, M. Keppert, J. Výborný, R. Černý, Hygric, thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mat., 41, 352–359 (2013).
 
18.
ČSN EN 680:2005 Determination of the drying shrinkage of autoclaved aerated concrete. Czech Standards Institute, Prague 2006.
 
20.
ČSN EN 13009:2000 Hygrothermal performance of building materials and products - Determination of hygric expansion coeffi cient. Czech Standards Institute, Prague 2001.
 
21.
F.R. Gottfredsen, H.H. Knutsson, A. Nielsen, Determination of length changes due to moisture variations in autoclaved aerated concrete. Mat. Struct., 30, 148-153 (1997).
 
22.
K. Ramamurthy, N. Narayanan, Infl uence of composition and curing on drying shrinkage of aerated concrete. Mat. Struct., 33, 243-250 (2000).
 
23.
D. S. Klimesch, A. Rayb, B. Sloane, Autoclaved cement-quartz pastes: the effects on chemical and physical properties when using ground quartz with different surface areas. Part I: Quartz of wide particle size distribution. Cem. Concr. Res., 26, 1399-1408 (1996).
 
24.
A. Hauser, U. Eggenberger, T. Mumenthaler, Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete. Cem. Concr. Res., 29, 297–302 (1999).
 
25.
R. Drochytka, J. Zach, A. Korjenic, J. Hroudová, Improving the energy effi ciency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy and Buildings 58, 319–323 (2013).
 
26.
B. Trunk, G. Schober, A.K. Helbling, F.H. Wittmann, Fracture mechanics parameters of autoclaved aerated concrete. Cem. Concr. Res., 29, 855–859 (1999).
 
27.
P. Schubert, Shrinkage behaviour of aerated concrete. In: F.H. Wittmann (ed.), Autoclaved Aerated Concrete, Moisture and Properties, pp. 207-217, Elsevier, Amsterdam 1983.
 
28.
N. Narayanan, K. Ramamurthy, Structure and properties of aerated concrete: a review. Cem. Concr. Comp., 22, 321-329 (2000).
 
ISSN:1425-8129
Journals System - logo
Scroll to top