Application of experimental setup for the thermal conductivity measurement for searching novel environmental material solutions used in construction
 
More details
Hide details
1
Instytut Budownictwa, Wydział Budownictwa, Mechaniki i Petrochemii, Politechnika Warszawska, ul. Łukasiewicza 17, 09-400 Płock
 
2
Instytut Inżynierii Mechanicznej, Wydział Budownictwa, Mechaniki i Petrochemii, Politechnika Warszawska, ul. Łukasiewicza 17, 09-400 Płock
 
 
Publication date: 2021-01-26
 
 
Cement Wapno Beton 25(6) 505-513 (2020)
 
KEYWORDS
ABSTRACT
The presented work includes experimental data on the influence of lightweight filler on the thermal conductivity of λ gypsum. In this research, cenospheres were used. Cenospheres were added in the amount of 10% in respect to the mass of gypsum. To measure thermal conductivity, a non-stationary method was used based on the “hot wire method”. A decrease of thermal conductivity and density with added lightweight filler was observed because of microstructure modifications of the gypsum product. Additional microscopic images of the fractures of the modified gypsum were made.
REFERENCES (10)
1.
D. Heim, A. Mrowiec, K. Prałat, Analysis and interpretation of results of thermal conductivity obtained by the hot wire method. Exper. Techn. 40(2), 513-519 (2016).
 
2.
S.S. Kim, S.R. Bhowmik, Thermophysical properties of plain yogurt as functions of moisture content. J. Food Eng. 32(1), 109-124 (1997).
 
3.
E. Yamasue, M. Susa, H. Fukuyama, K. Nagata, Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe. J. Cryst. Growth, 234(1), 121-131 (2002).
 
4.
K. Prałat, Research on thermal conductivity of the wood and analysis of results obtained by the hot wire method. Exper. Techn. 40(3), 973-980 (2016).
 
5.
D. Heim, A. Mrowiec, K. Prałat, M. Mucha, Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity. J. Mater. Civ. Eng. 30(3), (2018). https://doi.org/10.1061/(ASCE)....
 
6.
J. Strzałkowski, H. Garbalińska, Thermal and strength properties of lightweight concretes with the addition of aerogel particles. Adv. Cem. Res. 28(9), 567-575 (2016).
 
7.
J.J. Chen, P.L. Ng, L.G. Li, A.K.H. Kwan, Production of high-performance concrete by addition of fly ash microsphere and condensed silica fume. Proc. Eng. 172, 165-171 (2017).
 
8.
D. Pernica, P.N.B. Reis, J.A.M. Ferreira, P. Louda, Effect of test conditions on the bending strength of a geopolymer-reinforced composite. J. Mater. Sci. 45(3), 744 (2010).
 
9.
W. Pichór, Properties of fiber reinforced cement composites with cenospheres from coal ash., Proc. Int. Symp. Brittle Matrix Composites 9, A.M. Brandt, J. Olek, I.H. Marshall (Ed.), 8, 245–254 (2009).
 
10.
K. Prałat, M. Grabowski, W. Kubissa, R. Jaskulski, J. Ciemnicka, Application of experimental setup for the thermal conductivity measurement of building materials using the "hot wire" method. Sci. Rev. Eng. Environ. Sci. 28(1), 153-160 (2019). https://doi.org/10.22630/PNIKS....
 
ISSN:1425-8129
Journals System - logo
Scroll to top