Mitigating the cracks in concrete pavements
 
 
 
More details
Hide details
1
Department of Civil Engineering, Hacettepe University, Ankara, Turkey
 
 
Publication date: 2018-11-01
 
 
Cement Wapno Beton 23(6) 453-467 (2018)
 
KEYWORDS
ACKNOWLEDGEMENTS
Writer thanks for support to Hacettepe University Scientifi c Research Projects Coordination Unit (no:FDS-2015-8791).
REFERENCES (41)
1.
AS 1141.60.1, Methods for Sampling and Testing Aggregates Part 60.1: Alkali Aggregate Reactivity-Accelerated Mortar Bar Method.
 
2.
AS 1141.60.2, Methods for Sampling and Testing Aggregates Part 60.2: Alkali Aggregate Reactivity-Concrete Prism Method. Sydney.
 
3.
W. F. Cole, C. J. Lancucki, M. J. Sandy, Products formed in an aged concrete, Cem. Concr. Res., 11, 3, 443–454, (1981), DOI: 10.1016/0008- 8846(81)90116-2.
 
4.
CSA-A23.1, ‘‘Concrete Materials and Methods of Concrete Construction’’, Appendix B, Alkali-Aggregate Reaction, CAN/CSA-A23.1, Canadian Standards Association, Toronto, Canada 2004.
 
5.
S. Diamond, N. Thaulow, “Study of expansion due to ASR as conditioned by the grain size of the aggregate.” Cem. Concr. Res., 4, 4, 591-607, (1974).
 
6.
C. F. Dunant, K. L. Scrivener, ‘‘Effects of aggregate size on alkali–silica- -reaction induced expansion.’’ Cem. Concr. Res., 42, 745–751, (2012) DOI: 10.1016/j.cemconres.2012.02.012.
 
7.
J. A. Farny, K. Beatrix, ‘‘Concrete technology: diagnosis and control of alkali-aggregate reactions in concrete’’, Portland Cement Association 2007.
 
8.
Federal Highway Administration. “The Use of Lithium to Prevent or Mitigate Alkali-Silica Reaction in Concrete Pavements and Structures.” Department of Transportation 2007.
 
9.
Federal Highway Administration ‘‘Selecting Measures to Prevent Deleterious Alkali-Silica Reaction in Concrete- Rationale for the AASHTO PP65 Prescriptive Approach.’’ U.S. Department of Transportation 2012.
 
10.
P. E. Grattan-Bellew, ‘‘Alkali contribution from limestone aggregate to pore solution of old concrete’’, ACI Materials Journal, 91, 2, 173- 177 (1994)
 
11.
S. Han, M. Fang, ‘‘Alkali-aggregate reaction under high temperature, high pressure and high alkali content.’’ Journal of Nanjing Institute of Chemical Technology, 2, 1-10 (1984).
 
12.
R. Helmuth, ‘‘Alkali-Silica Reactivity: An Overview of Research.’’ SHRP-C-342, Strategic Highway Research Program, Washington, D. C., Also PCA Publication LT177 (1993).
 
13.
D. Hernandez-Cruz, C. W. Hargis, J. Dominowski, M. J. Radler, P. M. J. Monteiro, ‘‘Fiber reinforced mortar affected by alkali-silica reaction: A study by synchrotron microtomography.’’ Cem. Concr. Comp., 68, 123-130 (2016), DOI: 10.1016/j.cemconcomp.2016.02.003.
 
14.
Highway Technical Specifi cation, General Directorate of Highways, 2013.
 
15.
D. W. Hobbs, W. A. Gutteridge, “Particle size of aggregate and its infl uence upon the expansion caused by the alkali-silica reaction.” Mag. Concr. Res., 31, 109, 235-242 (1979).
 
16.
A. Horvath, H. Chris, ‘‘Comparison of Environmental Implications of Asphalt and Steel-Reinforced Concrete Pavements.’’ Transportation Research Record, 1626, 105-113 (1998), DOI: 10.3141/1626-13.
 
17.
Y. Kawabata, K. Yamada, ‘‘The mechanism of limited inhibition by fl y ash on expansion due to alkali–silica reaction at the pessimum proportion’’, Cem. Concr. Res., 92, 1-15 (2017), DOI: 10.1016/j.cemconres.2016.11.002.
 
18.
J. Lindgard, Ö. A. Çakır, I. Fernandes, T. F. Ronning, M. D. A. Thomas, “Alkali–silica reactions (ASR): Literature review on parameters infl uencing laboratory performance testing.” Cem. Concr. Res., 42, 223-243 (2012), DOI: 10.1016/j.cemconres.2011.10.004.
 
19.
L. J. Malvar, G. D. Cline, D. F. Burke, R. Rollings, T. W. Sherman, J. L. Greene “Alkali- Silica Reaction Mitigation: State of the art and Recommendations.” ACI Materials Journal, 99, 480-489 (2002).
 
20.
P. K. Mehta, P. J. M. Monteiro ‘‘Concrete microstructure, properties and materials’’, 659, Prentice-Hall Inc., Englewood Cliffs, New Jersey 1993.
 
21.
S. Multon, F. Toutlemonde, ‘‘Effect of moisture conditions and transfers on alkali silica reaction damaged structures’’ Cem. Concr. Res., 40, 6, 924–34 (2010), DOI: 10.1016/j.cemconres.2010.01.011 .
 
22.
S. Nayir, ‘‘Investigation on the effects of mineral additives in mitigating of alkali-silica reaction’’, KTU, 2015.
 
23.
A. M. Neville, “Properties of Concrete.” John Wiley & Sons Inc., New York, U.S.A, 1997.
 
24.
Z. Owsiak, J. Zapała-Sławeta, „The lithium nitrate effect on the concrete expansion caused by alkali-silica reaction in concrete of gravel aggregate”, Cement Wapno Beton, 82, 25 (2015).
 
25.
K. Ramyar, A. Topal, Ö. Andiç, ‘‘Effects of aggregate size and angularity on alkali-silica reaction.’’ Cem. Concr. Res., 35, 11, 2165-2169 (2005).
 
26.
A. Saccani, M. C. Bignozzi, ‘‘ASR expansion behavior of recycled glass fi ne aggregates in concrete.’’ Cem. Concr. Res., 40, 531–536 (2010), 10.1016/j.cemconres.2009.09.003.
 
27.
A. K. Saha, P. K. Sarker, ‘‘Expansion due to alkali-silica reaction of ferronickel slag fi ne aggregate in OPC and blended cement mortars.’’ Construction and Building Materials, 123, 135–142 (2016), DOI: 10.1016/j. conbuildmat.2016.06.144.
 
28.
A. Shayan, R. Diggings, I. Ivanusec “Effectiveness of Fly Ash in Preventing Deleterious Expansion Due to Alkali-Aggregate Reaction in Normal and Steam-Cured Concrete.” Cem. Concr. Res., 26, 1, 153-164 (1996), DOI: 10.1016/0008-8846(95)00191-3.
 
29.
R. G. Sibbick, C. L. Page ‘‘Treshold alkali contents for expansion of concrete containing British aggregates.’’ Cem. Concr. Res., 22, 990-994 (1991), DOI: 10.1016/0008-8846(92)90123-D.
 
30.
V. Sirivivatnanon, J. Mohammadi, W. South, ‘‘Reliability of new Australian test methods in predicting alkali silica reaction of fi eld concrete.’’ Construction and Building Materials, 126, 868–874 (2016), DOI: 10.1016/j. conbuildmat.2016.09.055.
 
31.
Standards Australia, Aggregates and Rock for Engineering Purposes (AS 2758.1-98), 1998.
 
32.
Standards Australia, Method for Sampling and Testing Aggregates (2014) Potential Alkali Silica Reactivity – Accelerated Mortar Bar Method (AS 1141.60.1-14).
 
33.
D. Stark, B. Morgan, P. Okamoto, ‘‘Eliminating or Minimizing Alkali-Silica Reactivity’’, Strategic Highway Research Program, National Research Council, Washington 1993, DC, 266.
 
34.
Sydney 2014, K. Afshinnia, A. Poursaee, ‘‘The infl uence of waste crumb rubber in reducing the alkali–silica reaction in mortar bars’’, Journal of Building Engineering, 4, 231–236 (2015), DOI: 10.1016/j.jobe.2015.10.002.
 
35.
R. N. Swamy, M. M. Al-Asali, ‘‘Expansion of concrete due to ASR.’’ ACI Materials Journal, 85, 1, 33-40 (1988).
 
36.
W. E. Touma, D. F. Fowler, R. L. Carrasquillo, ‘‘Alkali-silica Reaction in Portland cement Concrete: Testing methods and Mitigation Alternatives’’, Performing Organization Report No. Research Report ICAR 301-1F, International Center for Aggregates Research, The University of Texas at Austin, Texas and Texas A &M University College Station, Texas. 2001.
 
37.
K. Voland, F. Weise, B. Menga, ‘‘Alkali-Silica Reaction in Concrete Pavements’’, Key Engineering Materials, 711, 714-721 (2016), DOI: 10.4028/ www.scientifi c.net/KEM.711.714.
 
38.
T. Williamson, M. C. G. Juenger, ‘‘The role of activating solution concentration on alkali–silica reaction in alkali-activated fl y ash concrete’’, Cem. Concr. Res., 83, 124–130 (2016), DOI: 10.1016/j.cemconres.2016.02.008.
 
39.
H. Woods, ‘‘Durability of Concrete Construction.’’ Michigan: American Concrete Institute 1968.
 
40.
C. Zhang, A. Wang, M. Tang, B. Wu, N. Zhang, ‘‘Infl uence of aggregate size and aggregate size grading on ASR expansion.’’ Cem. Concr. Res., 29: 1393-1396 (1999), DOI: 10.1016/S0008-8846(99)00099-X.
 
41.
K. Zheng, ‘‘Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction’’, Cem. Concr. Comp., 67, 30-38 (2016), 10.1016/j. cemconcomp.2015.12.008.
 
ISSN:1425-8129
Journals System - logo
Scroll to top