Relationship between microstructure of carbonate rocks, calcite crystallinity and decarbonisation process during lime burning
More details
Hide details
1
Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czech Republic
2
Institute of Technology of Building Materials and Components, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
3
Lime Business Consulting s. r. o., Brno, Czech Republic
Publication date: 2019-02-07
Cement Wapno Beton 24(1) 2-9 (2019)
ABSTRACT
The use of limestone in lime and clinker production respectively represents one of the biggest industrial branches worldwide. Decarbonization is a crucial part of the burning process. No clear prediction method of the decarbonisation heat for a particular limestone, even in a relative scale, has been published yet. In the presented research, ten diverse very pure limestone samples from neoproterozoic up to cretaceous were studied by means of light microscopy, powder XRD and differential scanning calorimetry. The samples showed similar mineralogical compositions and relatively close calcite crystallinity including mean crystals size, but very different microstructures and the crystals sizes. DSC was used to measure and compare the heat of different limestones decarbonisation. With the exception of three samples with extremely dense or coarse microstructure, a strong correlation of 0.95 according to the Pearson test between mean size of calcite crystals and the value of the decarbonisation heat was found.
FUNDING
The paper was elaborated with the financial support of GA 17-24954S “The Conditions of Thermodynamic Stability and Transformation of AFt Phases” project and project No. LO1408 "AdMaS UP - Advanced Materials, Structures and Technologies", supported by Ministry of Education, Youth and Sports under the „National Sustainability Programme I"
Thanks for the classification of limestones and identification of fossils are due to Tomáš Kumpan (Department of Geological Sciences, Masaryk University).
REFERENCES (17)
1.
J. Stark, B. Wicht, Zement und Kalk - der Baustoff als Werkstoff., 376 (2000).
2.
A. Murray, I. James, Shrinkage, activity as functions of lime burning conditions. Pit and Quarry, 49, 122-27, (1957).
3.
C. Rodriguez-Navarro, E. Ruiz-Agudo, A. Luque, A. B. Rodriguez-Navarro, and M. Ortega-Huertas, Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. Am Mineral, 94, 578–593 (2009).
4.
H. Lehmann, J. Wuhrer, J. W. Lahl, Das Brennverhalten von Kalksteinen aus ver schiedenen geologischen Formationen. – TIZ-Zbl., 82, 486 – 489, (1958).
5.
J. L. Eades, P. A. Sandberg, Characterization of the Properties of Commercial Lime by Surface Area Measurements and Scanning Electron Microscopy: Seventy-second Annual Meeting - American Society For Testing And Materials, 3-23 (1970).
6.
K. P. Kacker, R. C. Satiya, D. Chandra, Einfl uß von Tonmineralien auf die thermische Zersetzung von Kalkstein und Dolomit. ZKG INT, 25, 37- 41 (1972).
7.
M. L. Frey, Zusammenhang zwischen Branntkalk- und KalksteinEigenschaften: For- mulierung, quantifi zierende Beschreibung und funktionelle Verknü pfung von Eigen- schaften: Aachener Geowissenschaftliche Beiträ ge, 29, 364 (1998).
8.
H. Hartmann, W. Wegener, Beitrag zum Lö schverhalten von Weißkalk in Abhä ngigkeit von Brenntemperatur und chemischer Zusammensetzung. ZKG INT, 7, 229- 240 (1954).
9.
S. A. Markgraf, R. J. Reeder, High-temperature structure refi nements of calcite and magnesite, Am Mineral. 70, 590-600 (1985).
10.
J. A. Murray, H. C. Fischer, L. S. Rolnick, Shrinkage of high-calcium limestone during burning, J. Am. Ceram. Soc., 37, 323-328 (1954).
11.
R. J. Dunham, Classifi cation of carbonate rocks according to depositional texture. – In: Ham, W. E. (ed.): Classifi cation of carbonate rocks. A symposium. Amer. Ass. Petrol. Geol. Mem., 1: 108-171 (1962).
12.
V. P. Wright, A revised classifi cation of limestones, Sed. Geol., 76: 177-186 (1992).
13.
R. L. Folk, Spectral subdivision of limestone types. Amer. Ass. Petrol., Geol. Mem. 1, 62-84 (1962).
14.
R. L. Folk, Practical petrographic classifi cation of limestones: Am. Assoc. Petroleum Geologists Bull., 43, 1-38 (1959).
15.
K. H. Wolf, Simplifi ed classifi cation of limestone. Am. Assoc. Petroleum Geologists Bull. 44, 1414-1416 (1960).
16.
R. S. Boynton, Chemistry and Technology of Lime and Limestone. John Willey & Sons, INC. 1980.
17.
J. A. H. Oates, Lime and Limestone: Chemistry and Technology, Production and Uses. Willey-VCH Verlag GmbH (1998).