The alkali- aggregate reaction hazard in the case of barite concretes
 
More details
Hide details
1
Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa
 
 
Publication date: 2014-07-01
 
 
Cement Wapno Beton 19(4) 234-242 (2014)
 
ACKNOWLEDGEMENTS
Paper was prepared in the frame of the Project “Durability and effi ciency of concrete shields against ionizing radiation in nuclear power structures”, PBSII/A2/15/2014. WAXS investigations were carried out with the use of CePT infrastructure fi nanced by the European Union – European Regional Development Fund within the Operational Programme “Innovative economy” for 2007-2013.
REFERENCES (16)
1.
S. Góralczyk, Reaktywność alkaliczna kruszyw – czas wprowadzić doskonalsze metody badania, Kruszywa, 2, 13-15 (2011).
 
2.
Z. Owsiak, Reakcje kruszyw krzemionkowych z alkaliami w beton ie, Ceramika Polski Biuletyn Ceramiczny, 72, s. 107 (2002).
 
3.
Special NRC Oversight at Seabrook Nuclear Power Plant: Concrete De gradation, Union of Concerned Scientists, (2013).
 
4.
D.M. Roy, Mechanisms of Cement Paste Degradation Due to Chemical and Ph ysical Factors, 8th ICCC Rio de Janeiro, t. I, s. 362, Rio de Janeiro (1986).
 
5.
D.W. Hobbs, Infl uence of pulverized-fuel ash and granulated blast furnace slag upon expansion caused by the alkali–silica reaction, Mag. Concr. Res., 34, 82, 83-94 (1982).
 
6.
T.W. Locher, S. Sprung, Beton, 1973 (7), 302, 1973 (8) 349.
 
7.
H. Chen, J.A. Soles, V.M. Malhotra, “Investigations of supplementary cementing materials for reducing alkali-aggregate reactions”, CANMET, Int. Workshop on AAR in Concrete, Halifax, s. 20 (19 90).
 
8.
D. Jóźwiak-Niedźwiedzka, A.M. Brandt, Z. Ranachowski, Self-healing of cracks in fi bre reinforced mortar beams made with high calcium fl y ash, Cement Wapno Beton, 17, 1, 38-49 (2012).
 
9.
M. Mar ks, D. Jóźwiak-Niedźwiedzka, M.A. Glinicki, J. Olek, M. Marks, Assessment of Scaling Durability of Concrete with CFBC Ash by Automatic Classifi cation Rules J. Mater. Civ. Eng., 24, 7, 860-86 7 (2012).
 
10.
A.M. Brandt, Application of concrete as a material for anti-r adiation shielding – a review, Cement Wapno Beton, 18, 2, 815-822 (2013).
 
11.
A.M. Brandt, D. Jóźwiak-Niedźwiedzka, On the infl uence of i onizing radiation on microstructure and properties of concrete shields - a review, Cement Wapno Beton, 18, 4, 1-22 (2013).
 
12.
S. Kilincarsla n, I. Akhurt, C. Basyigit, The effect of barite rate on some physical and mechanical properties of concrete, Mat. Sc. Eng., A 424, 83-86 (2006).
 
13.
T. Kim, Alkali-silica reaction: Chemical mechanism, thermodynamic modelling, and effects of lithium ions, Ph.D. thesis, Purdue University, s. 230 (2013).
 
14.
J.A. Farny, S.H. Kosmatka, Diagnosis and Con trol of Alkali-Aggregate Reactions in Concrete, Portland Cement Association, IS413, s. 22 (1997).
 
15.
S.Y. Lee, A.M. Daugherty, D.J. Broton, Assessing Aggregat es for Radiation-Shielding Concrete, Methods for petrographic examination of high-density and boron bearing aggregates, Concr. Int., 35, 31-38 (20 13).
 
16.
ASTM C1260-07, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method).
 
ISSN:1425-8129
Journals System - logo
Scroll to top