Reduction of Urban Heat Islands with Whitetopping
 
More details
Hide details
1
Smart Minerals GmbH Reisnerstraße 53, A-1030 Vienna
 
2
University of Agricultural Sciences and Natural Resources, Institute for Meteorology, Gregor Mendel Strasse 33, A-1180 Vienna
 
3
Institute for Meteorology, Gregor Mendel Strasse 33, A-1180 Vienna
 
 
Publication date: 2019-07-15
 
 
Cement Wapno Beton 24(3) 173-187 (2019)
 
Corresponding author: office@smartminerals.at
KEYWORDS
ABSTRACT
The requirements for traffic areas in the urban zone are manifold and continuously increasing. The reduction of the heat islands, which adversely affect the urban climate due to their increased temperature, is of importance for the residents. An investigation revealed that light-coloured traffic areas can significantly reduce the surface temperature and overall temperature levels in urban areas, as illustrated by the example of Vienna, and improve the visibility of traffic participants at unchanged illumination levels at night. Whitetopping method is a simple and cost effective restoration method for improving the load bearing capacity and brightness characteristics of urban traffic zones. Model simulations of the air temperature over a 150×150 m homogeneous area with Whitetopping show that replacing asphalt roads with roads with a concrete topping, such as Whitetopping, with an albedo of 0.5 would lead to a daily air temperature reduction of approximately 1°C in summer. These findings agree with results from literature. Since roads represent 10% of the total area of a city, efficient and long-term measures to improve the microclimate and facilitate further increase in traffic safety can be taken.
REFERENCES (24)
1.
Matzarakis, A.: Die thermische Komponente des Stadtklimas. Habilitation an der Universität Freiburg. Freiburg. 2001 (in German).
 
2.
Helbig, A.; Baumüller, J.; Kerchgens, M.J.: Stadtklima und Luftreinhaltung, 2. Aufl . Springer Verlag Berlin Heidelberg New York. 1999 (in German).
 
3.
Fezer, F.: Das Klima der Städte. Perthes Geographie Verlag. Gotha. 1995 (in German).
 
4.
Nefzger, H.; Karipot, A.: Einfl uß von Strahlung und Mikroklima auf Straßenwetterprognosen. Bundesministerium für wirtschaftliche Angelegenheiten. Wien. 1997 (in German).
 
5.
Wiener Umweltschutzabteilung MA 22, Thermalbild vom 15.08.2001 20-22MEZ.
 
6.
Google.at/maps: retrieved in January 2010.
 
7.
Zinzi, M.: Cool materials and cool roofs: Potentialities in Mediterranean buildings. Adv. Build. Energ. Res. 2010, 4, S. 201-266.
 
8.
Synnefa A.; Karlessi T.; Gaitani N.; Santamouris M.; ASSIMAKOPOULOS DN.; PAPAKATSIKAS C.: On the optical and thermal performance of cool colored thin layer asphalt used to improve urban microclimate and reduce the energy consumption of buildings. Build Environ, 2011, 46, S. 38-44.
 
9.
Doulos L.; Santamouris M.; Livada I.: Passive Cooling of outdoor urban spaces. The role of materials. Sol Energy 2004, 77(2), S. 231-249.
 
10.
Santamouris M.; Gaitani N.; Spanou A.; Saliari M.; Giannopoulou K.; Vasilakopoulou K.; Kardomateas T.: Using cool paving materials to improve microclimate of urban areas - Design realisation and results of the fl isvos project. Building and Environment, 2012, 53, S. 128-136.
 
11.
Weihs, P.: Anordnung der Versuchsfelder (Foto). Stadtverkehrsfl ächenOptimierter Beton für den innerstädtischen Bereich. In: Update, Heft 44. 2016. S. 2- 22. (in German).
 
12.
RVS 08.17.02: Deckenherstellung, Österreichische Forschungsgesellschaft Straße – Schiene – Verkehr, Wien. 2011 (in German).
 
13.
ÖNORM B 3327-1: Zemente gemäß ÖNORM EN 197-1 für besondere Verwendungen - Teil 1: Zusätzliche Anforderungen. Österreichisches Normungsinstitut, Wien. 2005 (in German).
 
14.
ÖNORM EN 13201-4: „Straßenbeleuchtung – Methoden zur Messung der Gütemerkmale von Straßenbeleuchtungsanlagen“, Österreichisches Normungsinstitut, Wien. 2005 (in German).
 
15.
ÖNORM EN 13201-3: Straßenbeleuchtung - Teil 3: Berechnung der Gütemerkmale, Österreichisches Normungsinstitut, Wien. 2005 (in German).
 
16.
BS 8493:2008+A1: 2010: Light refl ectance value of a surface – Method of test. BSI Standards Publication, 2008 (14.06.2016).
 
17.
MA 39: Laborbericht über die Bestimmung der Leuchtdichte von unterschiedlichen Straßenoberfl ächen, Erstellt im Rahmen des Forschungsprojektes von der Magistratsabteilung 39 - Prüf-, Überwachungs- und Zertifi zierungsstelle der Stadt Wien, 2015 (in German).
 
18.
Bruse, M.: Envi- met 3.1, Dezember 2009. In: http://www.envi-met.com/ documents/onlinehelpv3/helpindex.htm (14.06.2016).
 
19.
Weihs, P; Staiger, H; Tinz, B; Batchvarova, E; Rieder, H; Vuilleumier, L; Maturilli, M; Jendritzky, G; . (2012): The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol. 2012; 56(3):537-555.
 
20.
Hui, Li: Evaluation of Cool Pavement Strategies for Heat Island Mitigation. Phd University of California, 2012.
 
21.
Lee, H.; Mayer, H.; Schindler, D.: Importance of 3-D radiant fl ux densities for outdoor human thermal comfort on clear –sky summer days in Freiburg, Southwest Germany, Meteorologische Zeitschrift, 2014, Vol. 23, No. 3, S. 315-330.
 
22.
Akbari, H.; Rose, L.s.: Urban surfaces and heat island mitigation potentials. Journal of the Human-Environment System, 2008, 11, S. 85-101.
 
23.
Santamouris, M.: Cooling Cities – A review of refl ective and green roof mitigation technologies to fi ght heat island and improve comfort in urban environment. Solar Energy 2014, 103, S. 682-703.
 
24.
Zamg: Zentralanstalt für Meteorologie und Geodynamik. In:https://www. zamg.ac.at/cms/de/klima/informationsportal-klimawandel/klimavergangenheit/neoklima/lufttemperatur (14.06.2016) (in German).
 
ISSN:1425-8129
Journals System - logo
Scroll to top