The effect of sea water on the properties of concrete with silica fume admixture
,
 
,
 
 
 
More details
Hide details
1
Department of Civil Engineering, Kýrýkkale University, Kýrýkkale
 
2
Kastamonu Vocational School, Kastamonu University, Kastamonu
 
3
Faculty of Technical Education, Gazi University, Ankara
 
 
Publication date: 2010-01-01
 
 
Cement Wapno Beton 15(1) 22-30 (2010)
 
 
REFERENCES (36)
1.
T. S. Nagaraj, S. G. Shashiprakash, B. K. Raghuprasad, ACI Mater. J. 90, pp. 50–58, (1993).
 
2.
E. J. Garboczi, Computation materials science of cement-based materials. Materials Struces, 26:191–5, (1993).
 
3.
C. M. Aldea, F. Young, K. Wang, S. P. Shah, Effects of curing conditions on properties of concrete using slag replacement. Cement and Concrete Research; 30(3): 465–472, (2000).
 
4.
L. Bagel, Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume. Cement and Concrete Research; 28(7): 1011–1022, (1998).
 
5.
L. Dongxue, F. Xinhua, W. Xuequan, T. Mingshu, Durability study of steel slag cement. Cement and Concrete Research; 27(7): 983–987, (1997).
 
6.
O. S. B. Al-Amoudi, M. Maslehuddin, M. A. Bader, Characteristics of silica fume and its impact on concrete in the Arabian Gulf. Concr Construc; 35(2):45–50, (2001).
 
7.
F. Massazza, Evaluation of cements and cementitious systems: history and prospects. Proceedings of the second international symposium on cement and concrete technology in the 2000s. Istanbul; 3–28, (2000).
 
8.
F. Akoz, F. Turker, S. Koral, N. Yuzer, Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume. Cement and Concrete Research; 29(4):537–44, (1999).
 
9.
J. Skalny, J. Marchand, I. Odler, Sulphate Attack On Concrete, London, (2002).
 
10.
P. K. Mehta, H. Haynes, Durability of Concrete In Seawater, Journal of the American Society of Civil Engineers Structural Division, 101, pp:1679- 1686, (1975).
 
11.
S. Popovics, Concrete Materials: Properties, Specifi cations and Testing, p. 214, Noyes Publications, USA, (1992).
 
12.
Standard Specifi cation for Design and Construction of Concrete Structures, Part 2 (Construction), 1st ed., Japan Society of Civil Engineers, Tokyo, Japan, 1986 (SP-2).
 
13.
T. U. Mohammed, T. Yamaji, A. Toshiyuki, H. Hamada, Marine durability of 15-year old concrete specimens made with ordinary Portland, slag and fl y ash cement, ACI Spec. Publ. 199-30 2; 541–560, (2001).
 
14.
T. Fukute, H. Hamada, A study on the durability of concrete exposed in the marine environment for 20 years, Rep. Port Harb. Res. Inst. 31(5) 251–272, (1993).
 
15.
M. Uyan, Y. Akkaya, Effect of sea water used mixing water on concrete properties, Journal of Ready Mixed Concrete, The Turkish Ready Mixed Concrete Association, 2, 11, 80-84, (1995).
 
16.
S. Taban, O. Şimşek, The effect of zeolitic tuff addition ratio and sea water on physical and mechanical properties on cement, Journal Fac. Eng. Arch. Gazi Univ. Vol 24, No 1, 145-153, 2009.
 
17.
N. Yüzer, F. Aköz, The relation between tensile and compressive strengths of concrete exposed to chlorides, Technical Journal of Turkish Chamber of Civil Engineers, 16,4, 3673-3681, 2005.
 
18.
ASTM C33 Standard Specifi cation for Concrete Aggregates.
 
19.
TS 3530 EN 933-1/A1 Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method, Turkish Standards Institution, (2007).
 
20.
TS EN 1097-6/A1 Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption, (2007).
 
21.
TS EN 1367-1 Tests for thermal and weathering properties of aggregates – Part 1: Determination of resistance to freezing and thawing, (2009).
 
22.
TS EN 206-1/A2 Concrete - Part 1: Specifi cation performance, production and conformity, (2006).
 
23.
TS EN 12350-2 Testing fresh concrete- Part 2: Slump test, (2002).
 
24.
TS EN 12390-2 Testing hardened concrete - Part 2: Making and curing specimens for strength tests, (2002).
 
25.
TS 2941 Determination of unit weight, yield and air content of fresh concrete by weighting procedure, (1978).
 
26.
TS EN 12350-7 Testing fresh concrete- Part 7: Air content- Pressure methods, (2002).
 
27.
TS EN 12390-3 Testýng hardened concrete-Part 3:Compressýve strength of test specimens, (2003).
 
28.
TS EN 12390-6 Testing hardened concrete - Part 6: Tensile split strength fo test specimens, (2002).
 
29.
G. Appa Rao, “Investigations on the performance of silica fume-incorporated cement pastes and mortars”, Cement and Concrete Research 33; 1765–1770, (2003).
 
30.
K. H. Khayat, P. C. Aitcin, Silica fume in concrete—an overview. ACI SP-132. 2; p. 835–72, (1992).
 
31.
Ch. F. Ferraris, F. de Larrard, N. Martys, Fresh Concrete Rheology; Recent Developments Materials Science of Concrete VI, Mindess & Skalny eds., 215 (2001).
 
32.
T. U. Mohammed, H. Hamada, T. Yamaji, “Performance of seawatermixed concrete in the tidal environment”. Cement and Concrete Research 34; 593–601, (2004).
 
33.
M. P. Lorenzo, S. Goni, A. Guerrero, Role of Aluminous Component of Fly Ash on the Durability of Portland Cement–Fly Ash Pastes in Marine Environment, Waste Management; 23, 785–792, (2003).
 
34.
A. Guerrero, M. S. Herna´ndez, S. Gon˜ i, The Role of The Fly Ash Pozzolanic Activity in Simulated Sulphate Radioactive Liquid Waste, Waste Management 20 (1), 51–58, (2000).
 
35.
P. K. Mehta, Effect of Fly Ash composition On the Sulfate Resistance of Cement, J. Am. Concr. Inst. 83 (6), 994–1000, (1986).
 
36.
S. Diamond, Hydraulic Cement Pastes: their structure and properties, Proc. Of Conf. at University of Sheffi eld, April 1976, p. 2, Cement and Concrete Ass., Wexham Springs 1976.
 
ISSN:1425-8129
Journals System - logo
Scroll to top