The influence of lithium compounds on alkali – silica reaction in calcium aluminate cement mortars subjected to the deicing salts attack
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Building Materials Technology, Kraków, Poland
 
2
BARG Laboratorium Budowlane Sp. z o.o., Kraków, Poland
 
 
Publication date: 2019-02-02
 
 
Cement Wapno Beton 24(1) 56-67 (2019)
 
KEYWORDS
ABSTRACT
Paper presents the results of research on the effect of the lithium nitrate and carbonate addition on the alkali – silica reaction in calcium aluminate cement mortars, subjected to the a deicing salts attack. Mortars with the addition of quartz glass as the reactive aggregate were immersed in 4.5 molar sodium acetate, chloride and hydroxide solutions according to the modified ASTM C1260 method. In all cases, the mortars exhibited expansion, the highest for samples immersed in the acetate solution, and the lowest in the hydroxide solution. The addition of 1% of lithium carbonate in respect to the cement mass slightly reduces the expansion of mortars immersed in sodium acetate and hydroxide solutions. The addition of 1.86% and 3.73% of lithium nitrate increases the expansion of mortars immersed in both solutions. The addition of 1.86% lithium nitrate reduces the expansion of the mortar stored in sodium hydroxide solution, while 3.73% of this addition increases the expansion of this mortar. Changes in the microstructure were also presented.
REFERENCES (25)
1.
T. E. Stanton, Expansion of concrete through reaction between cement and aggregate. Proc. Am. Soc. Civ. Eng. 66 1781–1811 (1940).
 
2.
F. Rajabipour, E. Giannini, C. Dunant, J. H. Ideker, M. D. Thomas. Alkalisilica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76. 130–146 (2015).
 
3.
W. Kurdowski. Cement and Concrete Chemistry. Springer. Dordrecht. Heidelberg 2013.
 
4.
F.P. Glasser, Chemistry of the alkali – aggregate reaction. w red. R.N. Swamy, The Alkali – Silica Reaction in Concrete, Blackie, Glasgow, London, Van Nostrand Reinhold. New York, 1992.
 
5.
S. Diamond, R. S. Barneyback, L. J. Struble. On the physics and chemistry of alkali-silica reactions. 5th Int. Conf. Alkali-Agg. Reac. Cape Town 1981.
 
6.
N. Thaulow, M. Geiker. Determination of the residual reactivity of alkali silica reaction in concrete. 9th Int. Conf. Alkali-Aggr. React. Concr. London 1992. v. 2. 2150-2158; cytowane za (7).
 
7.
M. Thomas. The role of calcium hydroxide in alkali recycling in concrete. (red. J. Skalny, J. Gebauer, I. Odler) w Materials Science of Concrete: Calcium Hydroxide in Concrete. Wiley-Blackwell. 2001.
 
8.
S. Chatterjee, N. Thaulow, A. D. Jensen. Studies of Alkali-Silica Reaction. Part 4. Effect of different salt solutions on expansion. Cem. Concr. Res., 17. 777-783 (1987).
 
9.
S. Chatterjee, A. D. Jensen, N. Thaulow, S. Christensen. Studies of alkali-silica reaction. Part 3. Mechanism by Which NaCl and Ca(OH)2 Affect the Reaction. Cem. Concr. Res., 16, 246-254 (1986).
 
10.
A. Heisig, L. Urbonas, R. E. Beddoe, D. Heinz. Ingress of NaCl in concrete with alkali reactive aggregate: effect on silicon solubility. Mater. Struct., 49, 4291–4303 (2016).
 
11.
S. Diamond, Ł. Kotwica, J. Olek, P. R. Rangaraju, J. Lovell, B. Fournier. Chemical aspects of severe ASR induced by potassium acetate airfi eld pavement de-icer solution. Proc. Marc-Andre Berube Symposium on AlkaliAggregate Reactivity in Concrete. 261-279 (2006).
 
12.
P. R. Rangaraju, J. Olek. Potential for acceleration of ASR in presence of pavement deicing chemicals. IPRF (Innovative Pavement Research Foundation) Research Report. No. 01-G-002-03-92007.
 
13.
P. R. Rangaraju, K. R. Sompura, J. Olek. Investigation into Potential of Alkali–Acetate–Based Deicers to Cause Alkali–Silica Reaction in Concrete. Transp. Res. Rec.. 1979 69-78. (2006).
 
14.
P. R. Rangaraju, K. R. Sompura, J. Olek. An Investigation into DeicerInduced ASR Distress in Concrete. Proc. Int. Symp. Brittle Matrix Composites 8. (red.) A.M. Brandt. V. C. Li and I. M. Marshall. Warsaw. 2006.
 
15.
S. Math, D. Wingard, P. R. Rangaraju. Assessing Potential Reactivity of Aggregates in Presence of Potassium Acetate Deicer Revised Mortar Bar Test Method. Transp. Res. Rec., 2232. (2001).
 
16.
C. Giebson, K. Seyfarth, J. Stark. Infl uence of acetate and formatebased deicers on ASR in airfi eld concrete pavements. Cem. Concr. Res., 40. 537-545 (2010).
 
17.
S. Chatterjee, The Role of Ca(OH)2 in the breakdown of Portland cement concrete due to alkali-silica reaction. Cem. Concr. Res., 9. 185-188 (1979).
 
18.
H. Wang, J. E. Gillott. Mechanism of alkali-silica reaction and the signifi cance of calcium hydroxide. Cem. Concr. Res., 21. 647-654 (1991).
 
19.
Ł. Kotwica. M. Malich. Alkali-silica reaction in calcium aluminate cement mortars due to the action of deicing salts. submitted to Cem. Concr. Res. (2018).
 
20.
M. D. A. Thomas. The effect of supplementary cementing materials on alkali-silica reaction: a review. Cem. Concr. Res., 41, 1124-1131 (2011).
 
21.
A. K. Saha, M. N. N. Khan, P. K. Sarker, F. A. Shaikh, A. Pramanik. The ASR mechanism of reactive aggregates in concrete and its mitigation by fl y ash: A critical review. Constr. Build. Mater., 171, 743-758 (2018).
 
22.
S. M. H. Shafaatian. A. Akhavan. H. Maraghechi. F. Rajabipour. How does fl y ash mitigate alkali-silica reaction (ASR) in accelerated mortar bar test (ASTM C1567). Cem. Concr. Comp., 37, 143-153 (2013).
 
23.
P. Czapik, Z. Owsiak. Effect of zeolite exposed to ion-exchange with ammonium chloride on reaction of sodium and potassium hydroxides with gravel aggregate. Cement Wapno Beton, 21. 79-85 (2016).
 
24.
W. Aquino, D. A. Lange, J. Olek. The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products. Cem. Concr. Compos., 23. 485–493 (2001).
 
25.
Ł. Kotwica, M. Fular. Infl uence of ground waste expanded perlite on the reaction of siliceous aggregates with sodium and potassium hydroxides. Cement Wapno Beton, 23. 414-423 (2018).
 
ISSN:1425-8129
Journals System - logo
Scroll to top