The influence of basalt dust on the composition of the interfacial transition zone of aggregates with cement matrix
 
More details
Hide details
1
Uniwersytet Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy
 
 
Publication date: 2019-04-06
 
 
Cement Wapno Beton 24(2) 92-103 (2019)
 
ABSTRACT
Addition of the basalt dust to the concrete results in very beneficial changes in its microstructure. Tiny dust particles are deposited in pores of the interfacial transition zone, reducing its porosity and causing the increase of C-S-H phase content. Between some minerals on the surface of basalt dust particles and the solution in cement paste pores with a high concentration of calcium ions, reactions are occurring that change the interfacial transition zone. Sodium and magnesium ions contained in the feldspars of basalt dust diffuse to the C-S-H phase layers, substituting calcium ions in its structure, which in turn are absorbed in the feldspar surface layers. The reactions of minerals in basalt dust with C-S-H phase result in the formation of very strong bonds of basalt dust particles with C-S-H phase in cement matrix, which has a very positive effect on the concrete strength
 
REFERENCES (24)
1.
K. M. Alexander, J. Wardlaw, D. J. Gilbert, Aggregate-cement bond, cement paste strength and the strength of concrete, Proc. Int. Conf. Struct. Concr., 59–81 (1968).
 
2.
T. T. C. Hsu, F. O. Slate, G. M. Sturman, G. Winter, Microcracking of plain concrete and the shape of the stress-strain curve, ACI Mat. J., 60, 209–224 (1963).
 
3.
S. Mindess, S. Diamond, A preliminary SEM study of crack propagation in mortar, Cem. Concr. Res., 10, 509–519 (1980).
 
4.
A. Bentur, A. Goldman, M. D. Cohen, The contribution of the transition zone to the strength of high quality silica fume concretes, Proc. Mat. Res. Soc. Sym., 114, 97–103 (1988).
 
5.
R. J. Detwiler, P. K. Mehta, Chemical and physical effects of silica fume on the mechanical behavior of concrete, Mat. J., 86, 609–614 (1989).
 
6.
A. Godman, A. Bentur, Bond effects in high-strength silica fume concretes, Mat. J., 86, 440–449 (1989).
 
7.
W. Keru, Z. Jianhua, The infl uence of the matrix-aggregate bond on the strength and brittleness of concrete, Proc. Mat. Res. Soc. Sym., 114, 29–34 (1988).
 
8.
S. Mindess, Signifi cance to concrete performance of interfaces and bond: Challenges of the future, 8th ICCC, v. I, 151–157, Rio de Janeiro 1986.
 
9.
M. Regourd, Microstructure of high strength cement paste systems, Mat. Res. Soc. Sym., 42, 3–17 (1985).
 
10.
K. L. Scrivener, E. M. Gartner, Microstructural gradients in cement paste around aggregate particles, Proc. Mat. Res. Soc. Sym., 114, 77–85 (1988).
 
11.
B. D. Barnes, S. Diamond, W. L. Dolch, Micromorphology of the interfacial zone around aggregates in Portland cement mortar, J. Am. Cer. Soc., 62, 21–24 (1979).
 
12.
B. D. Barnes, S. Diamond, W. L. Dolch, The contact zone between portland cement paste and glass “aggregate” surfaces, Cem. Concr. Res., 8, 233–243 (1978).
 
13.
S. Diamond, Cement paste microstructure–an overview at several levels. In: Hydraulic Cement Pastes: Their Structure and Properties, Proceedings of a Conference at Sheffi eld, s. 2–31 University of Sheffi eld, Sheffi eld, England 1976.
 
14.
J. Piasta, W. G. Piasta, Beton zwykły: dobór kruszyw i cementów, projektowanie betonu, trwałość betonu, odporność chemiczna i termiczna, Arkady, Warszawa 1997.
 
15.
M. Hoshino, Relation between bleeding, coarse aggregate, and specimen height of concrete, ACI Mat. J., 86, 185–190 (1989).
 
16.
S. Diamond, J. Huang, The interfacial transition zone: reality or myth? In: Katz, A., Bentur, A., Alexander, M., and Arliguie, G. (eds.) The Interfacial Transition Zone in Cementitious Composite, s. 3–39 E&FN Spon, London 1998.
 
17.
A. M. Neville, Właściwości betonu. Stowarzyszenie Producentów Cementu, Kraków 2012.
 
18.
W. Kurdowski, Chemia Cementu i Betonu. Stowarzyszenie Producentów Cementu, Wydawnictwa Naukowe PWN, Kraków, Warszawa 2010.
 
19.
K. L. Scrivener, A. Bentur, P. L. Pratt, Quantitative characterization of the transition zone in high strength concretes, Advanc. Cem. Res., 1, 230–237 (1988).
 
20.
W. Nocuń-Wczelik, Pył krzemionkowy – właściwości i zastosowanie w betonie. Stowarzyszenie Producentów Cementu, Kraków 2005.
 
21.
M. Dobiszewska, Kompozyty cementowe z dodatkiem pyłu bazaltowego, Wyd. Uczelnianie UTP w Bydgoszczy, Bydgoszcz 2019.
 
22.
S.-Y. Hong, F. P. Glasser, Alkali binding in cement pastes: Part I. The C-S-H phase, Cem. Concr. Res., 29, 1893–1903 (1999).
 
23.
S. Grzeszczyk, K. Starzyk, Znaczenie rodzaju cementu w budowie strefy przejściowej w BWW, Cement Wapno Beton, 75, 89–98 (2008).
 
24.
A. Garbacik, S. Grzeszczyk, W. Kurdowski, Wpływ rodzaju cementu na reakcje kruszyw z fazą ciekłą zaczynu, 54 Konf. Nauk. KILiW PAN, s. 283-292, Krynica Zdrój 2008.
 
ISSN:1425-8129
Journals System - logo
Scroll to top