Fly ash influence on the properties of high performance concrete
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
 
2
Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
 
3
Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
 
4
Institute of Technology of Building Materials and Components, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
 
 
Publication date: 2009-07-01
 
 
Cement Wapno Beton 14(4) 189-204 (2009)
 
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under project No 103/07/0034.
 
REFERENCES (42)
1.
E.E. Berry, V.M. Malhotra, Fly-ash for use in concrete - a critical-review. Journal of the American Concrete Institute 77, 59-73 (1980).
 
2.
V.M. Malhotra, G.G. Carette, T.W. Bremner, Durability of concrete in marine-environment containing granulated blast-furnace slag, fly-ash, or both. Journal of the American Concrete Institute 77, 380 (1980).
 
3.
H. Yazici, The effect of silica fume and high-volume Class C fl y ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete. Construction and Building Materials 22, 456-462 (2008).
 
4.
N. Schwarz, H. Cam, N. Neithalath, Infl uence of a fi ne glass powder on the durability characteristics of concrete and its comparison to fl y ash. Cement & Concrete Composites 30, 486–496 (2008).
 
5.
S.C. Kou, C.S. Poon, D. Chan, Infl uence of fl y ash as a cement addition on the hardened properties of recycled aggregate concrete. Materials and Structures 41, 1191-1201 (2008).
 
6.
P. Chindaprasirt, C. Chotithanorm, H.T. Cao, V. Sirivivatnanon, Infl uence of fl y ash fi neness on the chloride penetration of concrete. Construction and Building Materials 21, 356–361 (2007).
 
7.
J.M. Khatib, Performance of self-compacting concrete containing fl y ash. Construction and Building Materials 22, 1963–1971 (2008).
 
8.
P. Dinakar, K.G. Babu, M. Santhanam, Durability properties of high volume fl y ash self compacting concretes. Cement & Concrete Composites 30, 880–886 (2008).
 
9.
B. Felekoglu, Utilisation of Turkish fl y ashes in cost effective HVFA concrete production. Fuel 85, 1944–1949 (2006).
 
10.
B. Kumar, G.K. Tike, P.K. Nanda, Evaluation of properties of high-volume fl y-ash concrete for pavements. Journal of Materials in Civil Engineering 19, 906-911 (2007).
 
11.
J. Małolepszy, E. Tkaczewska, Effect of fl y ash fi neness on the fl y ash cement hydration and properties. Cement Wapno Beton 12/74, 297-302 (2007).
 
12.
E. Tkaczewska, J. Małolepszy, Effect of the fl y ash fi neness on the sulphate resistance off fl y ash cement. Cement Wapno Beton 14/76, 26-33 (2009).
 
13.
V.M. Malhotra, P.K. Mehta, High-performance, high-volume fl y ash concrete. Supplementary cementing materials for sustainable development. Marquardt Printing, Ottawa 2002.
 
14.
J. Bensted, J. R. Smith, Oilwell cements part 5: applications of fl y ash in well cementing. Cement Wapno Beton 13/75, 17-30 (2008).
 
15.
B.H. Bharatkumar, B.K. Raghuprasad, D.S. Ramachandramurthy, R. Narayanan, S. Gopalakrishnan, Effect of fl y ash and slag on the fracture characteristics of high performance concrete. Materials and Structures 38, 63-72 (2005).
 
16.
W.C. Tang, T.Y. Lo, W.K. Chan, Fracture properties of normal and lightweight high-strength concrete. Magazine of Concrete Research 60, 237-244 (2008).
 
17.
R. Demirboga, I. Turkmen, M. B. Karakoc, Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Building and Environment 42, 349-354 (2007).
 
18.
R. Demirboga, Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment 42, 2467-2471 (2007).
 
19.
E. Mňahončáková, M. Pavlíková, S. Grzeszczyk, P. Rovnaníková, R. Černý, Hydric, thermal and mechanical properties of self-compacting concrete containing different fi llers. Construction and Building Materials 22, 1594-1600 (2008).
 
20.
V. Boel, K. Audenaert, G. De Schutter, G. Heirman, L. Vandewalle, B. Desmet, J. Vantomme, Transport properties of self compacting concrete with limestone fi ller or fl y ash. Materials and Structures 40, 507-516 (2007).
 
21.
S. Lammertijn, N. De Belie, Porosity, gas permeability, carbonation and their interaction in high-volume fl y ash concrete. Magazine of Concrete Research 60, 535-545 (2008).
 
22.
H. S. Shi, B. W. Xu, T. Shi, X. C. Zhou, Determination of gas permeability of high performance concrete containing fl y ash. Materials and Structures 41, 1051-1056 (2008).
 
23.
P. C. Aïtcin, High-Performance Concrete. E&FN Spon, London, 1998.
 
24.
ČSN EN 12390-3, Testing of hardened concrete – Part 3: Compressive strength. Czech Standardization Institute, Prague, 2002.
 
25.
S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science 27, 307-325 (2004).
 
26.
ČSN EN 12390-5, Testing of hardened concrete – Part 5: Bending strength. Czech Standardization Institute, Prague, 2007.
 
27.
B. L. Karihaloo, Fracture Mechanics of Concrete. Longman Scientifi c & Technical, New York, 1995.
 
28.
ČSN 73 1322/Z1:1968, Concrete testing – Hardened concrete – Frost resistance. Czech Standardization Institute, Prague, 2003.
 
29.
ČSN 731326/Z1:1984, Determination of the resistance of the surface of concrete against water and de-icing salts. Czech Standardization Institute, Prague, 2003.
 
30.
R. Černý, P. Rovnaníková, Transport Processes in Concrete. Spon Press, London, 2002.
 
31.
M.K. Kumaran, Moisture Diffusivity of Building Materials from Water Absorption Measurements. Journal of Thermal Envelope and Building Science 22, 349-355 (1999).
 
32.
L. Tang, L.O. Nilsson, Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research 23, 247-253 (1993).
 
33.
M. Jiřičková, R. Černý, Chloride Binding in Building Materials. Journal of Building Physics 29, 189-200 (2006).
 
34.
ČSN EN 12350-2, Testing of fresh concrete – Part 2: Slump test. Czech Standardization Institute, Prague, 2000.
 
35.
G.F. Peng, Q. Ma, H.M. Hu, R. Gao, Q.F. Yao, Y.F. Liu, The effects of air entrainment and pozzolans on frost resistance of 50–60 MPa grade concrete. Construction and Building Materials 21, 1034–1039 (2007).
 
36.
T. Gonen, S. Yazicioglu, The infl uence of mineral admixtures on the short and long-term performance of concrete. Building and Environment 42, 3080–3085 (2007).
 
37.
K. Torii, M. Kawamura, Effects of fl y ash and silica fume on the resistance of mortar to sulfuric acid and sulfate attack. Cement and Concrete Research 24, 361-370 (1994).
 
38.
I. Biczok, Concrete Corrosion and Concrete Protection. Akadémiai Kiadó, Budapest, 1964.
 
39.
A. Bentur, S. Diamond, N. S. Berke, Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice. E&FN Spon, London, 1997.
 
40.
R. Černý, J. Maděra, J. Poděbradská, J. Toman, J. Drchalová, T. Klečka, K. Jurek, P. Rovnaníková, The Effect of Compressive Stress on Thermal and Hygric Properties of Portland Cement Mortar in Wide Temperature and Moisture Ranges. Cement and Concrete Research 30, 1267-1276 (2000).
 
41.
J. Toman, R. Černý, Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges. Acta Polytechnica 41, 8-10 (2001).
 
42.
J. Toman, R. Černý, Temperature and Moisture Dependence of the Specifi c Heat of High Performance Concrete. Acta Polytechnica 41, 5-7 (2001).
 
ISSN:1425-8129
Journals System - logo
Scroll to top