Infl uence of curing on the properties of air-entrained concrete in the upper layer of exposed aggregate pavement – modelling study
 
More details
Hide details
1
Instytut Podstawowych Problemów Techniki PAN, Warszawa
 
2
Chryso Polska; Warszawa
 
 
Publication date: 2017-07-01
 
 
Cement Wapno Beton 22(4) 271-281 (2017)
 
KEYWORDS
ACKNOWLEDGEMENTS
The investigation was performed as a part of ASR-RID Project cofi nanced by National Center for Research and Development and General Directorate for Roads and Bridges in Poland. Materials for testing were supplied by Chryso Polska.
REFERENCES (32)
1.
A. Szydło, Nawierzchnie drogowe z betonu cementowego. Teoria, Wymiarowanie, Realizacja. Polski Cement, Kraków 2004.
 
2.
ZTV Beton-StB, Additional technical conditions of contract and directives for the construction of base courses with hydraulic binders and concrete pavements. Forschung Gesselschaft fur Strassen- und Verkehrswessen e.V., Koln 2007.
 
3.
RVS 08.17.02, Technische Vertagsbedingungen-Betondecken-Deckenherstellung (Technical Contract Conditions-Concrete Pavements-Pavement Construction), Osterreische Forshungsgesellschaft Strasse-Schiene-Verker, Wien 2011.
 
4.
M. Haider, R. Wehr, M. Conter, M. Kriegisch, S. Gasparoni, Texture and noise characteristics of exposed aggregate concrete road surfaces, 12th International Symposium on Concrete Roads, 23-26 September 2014, Prague.
 
5.
J. Skarabis, Nachbehandlung von Fahrbahndecken aus Waschbeton, Strasse und Autobahn 63, 5, 289-292 (2012).
 
6.
PN-EN 206:2014 Beton - Wymagania, właściwości, produkcja i zgodność.
 
7.
GDDKiA, Specyfi kacja techniczna nawierzchnia z betonu cementowego, Wzorcowe Dokumenty Kontraktowe (WDK) dla systemów „Projektuj i buduj” i „Utrzymaj standard”, https://www.gddkia.gov.pl/user... les/articles/s/ specyfikacja_13123/III_betony/OST%20NAWIERZCHNIA%20Z%20 BETONU%20CEMENTOWEGO%2015.07.2014.pdf (dostęp 4.02.2017).
 
8.
M. A. Glinicki, Trwałość betonu w nawierzchniach drogowych: wpływ mikrostruktury, projektowanie materiałowe, diagnostyka. Instytut Badawczy Dróg i Mostów, Warszawa 2011.
 
9.
A. Szydło, P. Mackiewicz, R. Wardęga, B. Krawczyk, Katalog typowych konstrukcji nawierzchni sztywnych, Załącznik do zarządzenia Nr 30 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 16.06.2014 r.
 
10.
PN-EN 12620:2010 Aggregates for concrete.
 
11.
M. A. Glinicki, R. Jaskulski, M. Dąbrowski, Design principles and testing of internal frost resistance of concrete for road structures-critical review, Roads and Bridges - Drogi i Mosty, 15 (1), 21-43 (2016), doi: 10.7409/ rabdim.016.002.
 
12.
A. Akkari, B. Izevbekha, Composite Pavements and Exposed Aggregate Texturing at MnROAD., Cells 70, 71 and 72, 6. Construction Report and Early Performance Evaluation, Minnesota Department of Transportation, Maplewood MN, 2012.
 
13.
J.-H. Jeong, D. G. Zollinger, Development of Test Methodology and Model for Evaluation of Curing Effectiveness in Concrete Pavement Construction, Transportation Research Record Journal of the Transportation Research Board 1861(1),17-25 (2003), doi:10.3141/1861-03.
 
14.
P. Woyciechowski, A. Chudan, Metody i środki pielęgnacji betonu w formach i „in situ”, XVII Ogólnopolska Konferencja Warsztat Pracy Projektanta Konstrukcji, Ustroń, 20 ÷ 23 lutego 2002 r., PZiTB O/Gliwice.
 
15.
P.-C. Aïtcin, The problems with high strength and low w/c ratio concretes, Cement-Wapno-Beton 81 (2), 127-137 (2014).
 
16.
12. A. Akkari, B. Izevbekha, Composite Pavements and Exposed Aggregate Texturing at MnROAD., Cells 70, 71 and 72, 6. Construction Report and Early Performance Evaluation, Minnesota Department of Transportation, Maplewood MN, 2012.
 
17.
M. A. Glinicki, Z. Zieliński, Frost salt scaling resistance of concrete containing CFBC fl y ash, Mat. Struct., 42, 7, 993-1002 (2009).
 
18.
PN-EN 480-11:2008 Admixtures for concrete, mortar and grout. Test methods. Determination of air void characteristics in hardened concrete.
 
19.
ASTM C1585:2013 Measurement of rate of absorption of water by hydraulic-cement concretes.
 
20.
NT Build 492:1999 Chloride migration coeffi cient from non-steady-state migration experiments.
 
21.
PN-B-06250: 1988 Beton zwykły.
 
22.
CEN/TS 12390-9:2007 Testing Hardened Concrete – Part 9: Freeze- -Thaw Resistance – Scaling.
 
23.
SS 137244:2005 Betongprovning - Hårdnad betong - Avfl agning vid frysning.
 
24.
J. Wawrzeńczyk, A. Molendowska, Air void structure in relation to the frost resistance of air-entrained concrete by with microspheres, Cement- -Wapno-Beton, 78, 5, 278-287 (2011).
 
25.
M. A. Glinicki, Methods of qualitative and quantitative assessment of concrete air entrainment, Cement-Wapno-Beton, 81, 6, 359-369 (2014).
 
26.
Z. Giergiczny, M. A. Glinicki, M. Sokołowski, M. Zieliński, Air void system and frost salt scaling of concrete containing slag blended cement, Constr. Build. Mat., 23, 2451-2456 (2009).
 
27.
L. Tang, L.-O. Nilsson, P. A. M. Basheer, Resistance of Concrete to Chloride Ingress: Testing and modelling, CRC Press, London and New York, 2011.
 
28.
R. Breitenbucher, C. Koster, Mindestluftporengehalt in Waschbeton. Forschung Strassenbau und Strassenverkehrstechnik, Heft 1084, Bonn 2013.
 
29.
PN-EN 13036-1:2010 Road and airfi eld surface characteristics. Test methods. Measurement of pavement surface macrotexture depth using a volumetric patch technique.
 
30.
Mechanistic-Empirical Pavement Design Guide - A Manual of Practice, American Association of State Highway and Transportation Offi cials, Washington 2008.
 
31.
T. S. Poole, Curing Portland Cement Concrete Pavements, Volume II, FHWA-HRT-05-038, McLean 2006.
 
32.
W. Kurdowski, A. Witek, J. Śliwiński, Concrete pavement on highway after 70 years of exploitation, the assessment of durability reason, CementWapno-Beton, 83, 1, 27-35 (2016).
 
ISSN:1425-8129
Journals System - logo
Scroll to top