Effect of natural zeolite on the properties of high performance concrete
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
 
2
Institute of Technology of Building Materials and Components, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
 
 
Publication date: 2013-05-01
 
 
Cement Wapno Beton 18(3) 150-159 (2013)
 
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under project No P104/12/0308
 
REFERENCES (25)
1.
T. Baran, W. Drożdż, P. Pichniarczyk, The use of calcareous fl y ash in cement and concrete manufacture. Cement Wapno Beton 17/79, 50-56 (2012).
 
2.
E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, Fly-Ash Infl uence on the Properties of High Performance Concrete. Cement Wapno Beton 13/75, 189-204 (2009).
 
3.
T. K. Erdem, G. Tayfur, Ö. Kirca, Experimental and modelling study of strength of high strength concrete containing binary and ternary binders. Cement Wapno Beton 16/78, 224-237 (2011).
 
4.
E. Vejmelková, M. Keppert, S. Grzeszczyk, B. Skaliński, R. Černý, Properties of Self-Compacting Concrete Mixtures Containing Metakaolin and Blast Furnace Slag. Construction and Building Materials 25, 1325- 1331 (2011).
 
5.
K. Ganesan, K. Rajagopal, K. Thangavel, Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites 29, 515–524 (2007).
 
6.
M.S. Mansour, M.T. Abadlia, R. Jauberthie, I. Messaoudene, Metakaolin as a pozzolan for high-performance mortar. Cement Wapno Beton 17/79, 102-108 (2012).
 
7.
E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Construction and Building Materials 24, 1404-1411 (2010).
 
8.
C. Stanislao, C. Rispoli, G. Vola, P. Cappelletti, V. Morra, M. De Gennaro, Contribution to the knowledge of ancient Roman seawater concretes: Phlegrean pozzolan adopted in the construction of the harbour at Soli-Pompeiopolis (Mersin, Turkey). Periodico di Mineralogia 80, 471-488 (2011).
 
9.
N. Su, H.Y. Fang, Z.H. Chen, F.S. Liu, Reuse of waste catalysts from petrochemical industries for cement substitution. Cement and Concrete Research 30, 1773-1783 (2000).
 
10.
C.S. Poon, L. Lam, S.C. Kou, Z.S. Lin, A study on the hydration rate of natural zeolite blended cement pastes. Construction and Building Materials 13, 427-432 (1999).
 
11.
N. Feng, X. Feng, T. Hae, F. Xing, Effect of ultrafi ne mineral powder on the charge passed of the concrete. Cement and Concrete Research 32, 623-627 (2002).
 
12.
B. Ahmadi, M. Sherkarchi, Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites 32, 134-141 (2010).
 
13.
I. Janotka, L. Krajci, Sulfate resistance and passivation abi lity of the mortar made from pozzolan cement with zeolite. Journal of Thermal Analysis and Calorimetry 94, 7-14 (2008).
 
14.
C. Bilim, Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Construction and Building Materials 25, 3175-3180 (2011).
 
15.
C.B. Sisman, E. Gezer, Performance characteristics of concrete containing natural and artifi cial pozzolans. Journal and Agriculture and Environment 9, 493-497 (2011).
 
16.
M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials 35, 1023- 1033 (2012).
 
17.
C. Karakurt, I. B. Topçu, Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Construction and Building Materials 35, 906-911 (2012).
 
18.
S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science 27, 307-325 (2004).
 
19.
ČSN EN 12390-3 Testing of hardened concrete – Part 3: Compressive strength. Czech Standardization Institute, Prague, 2002.
 
20.
ČSN 731326/Z1:1984, Determination of the resistance of the surface of concrete against water and de-icing salts. Czech Standardization Institute, Prague, 2003.
 
21.
E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free Water Intake as Means of Material Characterization. Journal of Building Physics 33, 29-44 (2009).
 
22.
S. Y. N. Chan, X. Ji, Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes. Cement and Concrete Composites 21, 293-300 (1999).
 
23.
F. Canpolat, K. Yılmaz, M.M. Kose, M. Sumer, M.A. Yurdusev, Use of zeolite, coal bottom ash and fl y ash as replacement materials in cement production. Cement and Concrete Research 34, 731–735 (2004).
 
24.
E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fi ne-ground ceramics as supplementary cementitious material. Cement and Concrete Composites 34, 55-61 (2012).
 
25.
R. Černý, P. Rovnaníková, Transport Processes in Concrete. Spon Press, London 2002.
 
ISSN:1425-8129
Journals System - logo
Scroll to top