The lithium nitrate effect on the concrete expansion caused by alkali-silica reaction in concrete of gravel aggregate
 
More details
Hide details
1
Politechnika Świętokrzyska, Wydział Budownictwa i Architektury, Kielce
 
 
Publication date: 2015-01-01
 
 
Cement Wapno Beton 20(1) 25-31 (2015)
 
 
REFERENCES (26)
1.
Z. Owsiak, Reakcje kruszyw krzemionkowych z alkaliami w betonie, Polski Biuletyn Ceramiczny, 72 (2002).
 
2.
W. Kurdowski, Chemia cementu i betonu, SPC, Kraków 2010.
 
3.
J. Lindgård, Ö. Andiç-Çakir, I. Fernandes, T. F. Rønning, M. D. A. Thomas, Alkali-silica reaction (ASR): Literature review on parameters infl uencing laboratory performance testing, Cem. Concr. Res., 42, 2, 223-243 (2012).
 
4.
Š. Lukschová, R. Přikryl, Z. Pertold, Petrographic identifi cation of alkali- -silica reactive aggregates in concrete from 20th century bridges, Constr. Build. Mat., 23, 734-741 (2009).
 
5.
T. Katayama, The so-called alkali-carbonate reaction (ACR) – Its mineralogical and geochemical detail, with special reference to ASR, Cem. Concr. Res., 40, 643-675 (2010).
 
6.
P. E. Grattan-Bellew, L. D.Mitchell, J. Margesin, D. Min, Is alkali-carbonate reaction just a variant of silica reaction ACR = ASR?, Cem. Concr. Res., 40 (2010) 556-562.
 
7.
W. J. McCoy, A. G. Caldwell, New approach in inhibiting alkali– aggregate expansion, ACI Materials Journal, 22, 9, 693– 706 (1951).
 
8.
X. Feng, M. D. A. Thomas, T. W. Bremner, K. J. Folliard, B. Fournier, Summary of research on the effect of LiNO3 on alkali–silica reaction in new concrete, Cem. Concr. Res., 40, 636-642 (2010).
 
9.
X. Feng, M. D. A. Thomas, T. W. Bremner, K. J. Folliard, B. Fournier, New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR), Cem. Concr. Res., 40, 94–101 (2010).
 
10.
L. D. Mitchell, J. J Beaudoin, P. Grattan-Bellew, The effects of lithium hydroxide solution on alkali silica reaction gels created with opal, Cem. Concr. Res., 34, 4, 641–649 (2004).
 
11.
X. Mo, C. Yu, Z. Xu, Long-term effectiveness and mechanism of LiOH in inhibiting alkali silica reaction, Cem. Concr. Res., 33, 1, 115–119 (2003).
 
12.
Q. Bian, S. Nishibayashi, T. Wu X. Kuroda, M Tang, Various chemicals in suppressing expansion due to alkali–silica reaction, Proc.10th Int. Conf. on Alkali–Aggregate Reaction, CSIRO Division of Building Construction and Engineering, p. 868, Melbourne, Australia 1996.
 
13.
M. Xiangyin, Y. Chenjie, X. Zhongzi, Long-term effectiveness and mechanism of LiOH in inhibiting alkali–silica reaction, Cem. Concr. Res., 33, 115–119 (2003).
 
14.
A. Bielański, Basic Inorganic Chemistry, 530, PWN Warszawa 1981.
 
15.
M. Xiangyin, Laboratory study of LiOH in inhibiting alkali–silica reaction at 20 jC: a contribution, Cem. Concr. Res., 35, 499–504 (2005).
 
16.
K. E. Kurtis, P. J. M. Monteiro, Chemical additives to control expansion of alkali-silica reaction gel: proposed mechanisms of control, J. Mat. Sci., 38, 2027 (2003).
 
17.
X. Feng, M. D. A. Thomas, T. W. Bremner, B. J. Balcom, K. J. Folliard, Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review, Cem. Concr. Res., 35, 1789-1796 (2005).
 
18.
Z. Owsiak, Rola wodorotlenku wapnia w reakcji alkaliów z krzemionką, Cement Wapno Beton, 69, 259- 263 (2003).
 
19.
Z. Owsiak, Wpływ fazy ciekłej w betonie na reakcje alkalia-krzemionka, Cement Wapno Beton, 67, 61-70 (2001).
 
20.
W. C. Hansen, J. Amer. Concr. Inst., 15, 213 (1944).
 
21.
S. Chaterji, Cem. Concr. Res., 9, 185 (1979).
 
22.
H. F. W. Taylor, Cement Chemistry, Academic Press, 1990.
 
23.
M. Kawamura, K. Takemoto, S. Hasaba, Proc. 6th Int. Conf. on Alkalis in Concrete, p. 167, Copenhagen 1983.
 
24.
L. J. Struble, S. Diamond, Cem. Concr. Res., 11, 611 (1981).
 
25.
PN-92/B-06714-46 Mineral Aggregates. Researches. Designation of potential alkaline reactivity by rapid method.
 
26.
ASTM C 227 - 10 Standard Test Method for Potential Alkali Reactivity of Cement Aggregate Combinations (Mortar-Bar Method).
 
ISSN:1425-8129
Journals System - logo
Scroll to top