Mechanical, hygric, and durability properties of cement mortar with MSWI bottom ash as partial silica sand replacement
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
 
 
Publication date: 2014-03-01
 
 
Cement Wapno Beton 19(2) 67-80 (2014)
 
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under project No P105/12/G059.
 
REFERENCES (35)
1.
Y. Li, J. J. Chen, A. K. H. Kwan, Roles of water fi lm thickness in fresh and hardened properties of mortar. Adv. in Cem. Res. 25, 171-182 (2013).
 
2.
E. Horszczaruk, E. Mijowska, K. Cendrowski, S. Mijowska, P. Sikora, The infl uence of nanosilica with different morphology on the mechanical properties of cement mortars. Cement Wapno Beton, 79, 24-32 (2013).
 
3.
M. Jalal, M. Fathi, M. Farzad, Effects of fl y ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete. Mechanics of Materials, 61, 11- 27 (2013).
 
4.
E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, Fly-Ash Infl uence on the Properties of High Performance Concrete. Cement Wapno Beton, 75, 189-204 (2009).
 
5.
W. Grzmil, Z. Owsiak, The infl uence of carbonation of self-compacting concrete with granulated blastfurnace slag addition on its chosen properties. Cement Wapno Beton, 79, 137-144 (2013).
 
6.
H. K. Kim, H. K. Lee, Effects of High Volumes of Fly Ash, Blast Furnace Slag, and Bottom Ash on Flow Characteristics, Density, and Compressive Strength of High-Strength Mortar. Journal of Materials in Civil Engineering, 25, 662-665 (2013).
 
7.
R. Drochytka, J. Zach, A. Korjenic, J. Hroudová, Improving the energy effi ciency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste. Energy and Buildings, 58, 319-323 (2013).
 
8.
J. P. Gonçalves, L. M. Taveres, R. D. Toledo Filho, E. M. R. Fairbairn, Performance evaluation of cement mortars modifi ed with metakaolin or ground brick. Construction and Building Materials, 23, 1971–1979 (2009).
 
9.
M. C. Nataraja, T. S. Nagaraj, A. Reddy, Proportioning concrete mixes with quarry wastes. Cement Concrete and Aggregates, 23, 81–87 (2001).
 
10.
M. Keppert, Z. Pavlík, V. Tydlitát, P. Volfová, S. Švarcová, M. Šyc, R. Černý, Properties of municipal solid waste incineration ashes with respect to their separation temperature. Waste Management Research, 30, 1041- 1048 (2012).
 
11.
M. Keppert, P. Reiterman, Z. Pavlík, M. Pavlíková, M. Jerman, R. Černý, Municipal solid waste incineration ashes and their potential for partial replacement of Portland cement and fi ne aggregates in concrete. Cement Wapno Beton, 77, 187-193 (2010).
 
12.
Z. Pavlík, M. Keppert, M. Pavlíková, P. Volfová, R. Černý, Environmental friendly concrete production using municipal solid waste incineration materials, WIT Transactions on Ecology and the Environment, 148, 325- 334 (2011).
 
13.
H. S. Shi, L.L. Khan, Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fl y ash used in concrete. Journal of Hazardous Materials, 164, 750–754 (2009).
 
14.
Y. Yang, Y. Yang, Q. Wang, Q. Huang, Release of heavy metals from concrete made with cement from cement kiln co-processing of hazardous wastes in pavement scenarios. Environmental Engineering Science, 28, 35–42 (2011).
 
15.
C. Lampris, J. A. Stegemann, M. Pellizon-Birelli, G. D. Fowler, C. R. Cheeseman, Metal leaching from monolithic stabilized/solidifi ed air pollution control residues. Journal of Hazardous Materials, 185, 1115–1123 (2011).
 
16.
J. R. Conner, Chemical Fixation and Solidifi cation of Hazardous Wastes. Van Nostrand-Reinhold, New York 1990.
 
17.
M. Collepardi, S. Collepardi, D. Ongaro, A.Q. Curzio, M. Sammartino, Concrete with Bottom Ash from Municipal Solid Wastes Incinerators. Proc. of 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, 289-298, 2010.
 
18.
H. A. Razak, S. Naganathan, S. N. A. Hamid, Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material, Journal of Hazardous Materials, 172, 862-867 (2009).
 
19.
O. Gines, J. M. Chimenos, A. Vizcarro, J. Formosa, J. R. Rosell, Combined use of MSWI bottom ash and fl y ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169, 643-650 (2009).
 
20.
R. Cioffi , F. Colangelo, F. Montagnaro, L. Santoro, Manufacture of artifi cial aggregate using MSWI bottom ash. Waste Management, 31, 281-288 (2011).
 
21.
S. Sorlini, A. Abba, C. Collivignarelli, Recovery of MSWI and soil washing residues as concrete aggregates. Waste Management, 31, 289- 297 (2011).
 
22.
Z. Pavlík, M. Keppert, M. Pavlíková, P. Volfová, R. Černý, Application of MSWI Bottom Ash as Alternative Aggregate in Cement Mortar. Management of Natural Resources. WIT Transactions on Ecology and the Environment, 148, 335-342 (2011).
 
23.
R. del Valle-Zermeño, J. Formosa, J. M. Chimenos, M. Martínez, A. I. Fernández, Aggregate material formulated with MSWI bottom ash and APC fl y ash for use as secondary building material. Waste Management, 33, 621–627 (2013).
 
24.
ČSN EN 12390-5. Testing of hardened concrete – Part 5: Bending strength. Czech Standardization Institute, Prague, 2007.
 
25.
ČSN EN 12390-3. Testing of hardened concrete – Part 3: Compressive strength. Czech Standardization Institute, Prague, 2007.
 
26.
I. Štubňa, A. Trník, L. Vozár, Determination of Young’s modulus of ceramics from fl exural vibration at elevated temperatures. Acta Acustica United with Acustica, 97, 1-7 (2011).
 
27.
E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free water intake as means of material characterization. Journal of Building Physics, 33, 29-44 (2009).
 
28.
C. Matano, On the relation between the diffusion coeffi cient and concentration of solid metals. Japanese Journal of Physics, 8, 109-115 (1933).
 
29.
Z. Pavlík, J. Žumár, I. Medveď, R. Černý, Water vapor adsorption in porous building materials: experimental measurement and theoretical analysis. Transport in Porous Media, 91, 939-954 (2012).
 
30.
SBI Report 295. Retention curves measured using pressure plate and pressure membrane apparatus. Danish Building Research Institute, Horsholm, 1998.
 
31.
ČSN 73 1322/Z1. Concrete testing – Hardened concrete – Frost resistance. Czech Standardization Institute, Prague, 2003.
 
32.
E. Vejmelková, M. Pavlíková, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete Containing Lower Slag Amount: A Complex View of Mechanical and Durability Properties. Constr. Build. Mat., 23, 2237-2245 (2009).
 
33.
E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý, High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Constr. Build. Mat., 24, 1404-1411 (2010).
 
34.
P. H. Groenevelt, G. H. Bolt, Water retention in soil. Soil Science, 113, 238-245 (1971).
 
35.
P. C. Aïtcin, The durability characteristics of high performance concrete: a review. Cem. Concr. Comp., 25, 409 – 420 (2003).
 
ISSN:1425-8129
Journals System - logo
Scroll to top