Physical properties of pumice and its behavior as a coarse aggregate in concrete
 
More details
Hide details
1
Departamento de Ciencias de la Tierra y la Construcción, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Ecuador
 
 
Publication date: 2018-11-01
 
 
Cement Wapno Beton 23(6) 468-478 (2018)
 
KEYWORDS
ACKNOWLEDGEMENTS
The authors acknowledge the assistance in the laboratory by Ing. Juan Haro and are also thankful for the permits for sampling pumices given by the owners of the quarry in the Rumicucho sector, northern Quito. We also thank the Universidad de las Fuerzas Armadas ESPE for logistic and fi nancial support.
 
REFERENCES (40)
1.
T. Akram, S. A. Memon, H. Obaid,. Production of low cost self compacting concrete using bagasse ash. Constr. Build. Mat., 23, 2, 703-712 (2009).
 
2.
J. Alexanderson, Relations between structure and mechanical properties of autoclaved aerated concrete. Cem. Concr. Res., 9, 4, 507-514 (1979).
 
3.
G. Amato, G. Campione, L. Cavaleri, G. Minafò, The use of pumice lightweight concrete for masonry. Materials and Structures, 45, 679–693 (2012).
 
4.
J. Ameratunga, N. Sivakugan, B. M. Das, Correlations of Soil and Rock Properties in Geotechnical Engineering, p. 228, Springer 2016.
 
5.
M. Ameri, A. Behnood, Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Constr. Build. Mat., 26, 1, 475-480 (2012).
 
6.
M. K. Ankith, Self Curing Concrete with Light Weight Aggregate. International Journal of Scientifi c Engineering and Research (IJSER), 3, 7, 107-111 (2014).
 
7.
ASTM, C., 128, Standard Test Method for Density, Relative Density (Specifi c Gravity), and Absorption of Fine Aggregate. American Society for Testing and Materials, Philadelphia 2007.
 
8.
S. J. Bailey, N. C. Baldini, Annual book of ASTM standards, 11, 775-776, ASTM International, USA 2007.
 
9.
S. Beck, Variations in the rupture mode of large earthquakes along the south american subduction zone, 59–62, Second ISAG 1993.
 
10.
F. G. Bell, Engineering properties of soils and rocks, p. 256, Elsevier 2013.
 
11.
D. P. Bentz, P. E. Stutzman,. Curing, hydration, and microstructure of cement paste. ACI materials journal, 103, 5, 348 (2006).
 
12.
G. A. Boertje, Chemical and physical characteristics of pumice as a growing medium, In International Symposium on Growing Media & Plant Nutrition in Horticulture, 401, 85-88, 1994.
 
13.
D. P. Bentz, P. E. Stutzman,. Curing, hydration, and microstructure of cement paste. ACI materials journal, 103, 5, 348 (2006). 12. G. A. Boertje, Chemical and physical characteristics of pumice as a growing medium, In International Symposium on Growing Media & Plant Nutrition in Horticulture, 401, 85-88, 1994. 13. G. Campione, L. Cavaleri, G. Macaluso, G. Amato, F. Di Trapani, Evaluation of infi lled frames: an updated in-plane-stiffness macro-model considering the effects of vertical loads. Bulletin of Earthquake Engineering, 13, 8, 2265-2281 (2015).
 
14.
W. O. George, The relation of the physical properties of natural glasses to their chemical composition, The Journal of Geology, 32 5, 353-372 (1924).
 
15.
A. Giesecke, A. Gómez, I. Leschiutta, E. Migliorin, The ceresis earthquake catalogue and database of the andean region: background, characteristics and examples of use. Annals of Geophysics, 47, 2/3, 421–435 (2004).
 
16.
L. Gündüz, I. Ugur, The effects of different fi ne and coarse pumice aggregate/cement ratios on the structural concrete properties without using any admixtures, Cem. Concr. Res., 35, 9, 1859-1864 (2004).
 
17.
K. M. A. Hossain, Properties of volcanic pumice based cement and lightweight concrete. Cem. Concr. Res., 34, 2, 83-291 (2004).
 
18.
J. Jimenes Salas, J. De Justo, Geotecnia y cimientos. Propiedades de los suelos y de las rocas, España: Rueda, p. 498, Madrid, España 2001.
 
19.
S. Kosmatka, M. L. Wilson, p. 520, Design and Control of Concrete Mixtures. Portland Cement Association; 16th edition, 2016.
 
20.
K. Kovler, O. M. Jensen, Novel techniques for concrete curing, Concrete International, 27, 09, 39-42 (2005).
 
21.
S. Kristiawan, Strength, Shrinkage and Creep of Concrete In Tension and Compression. CED, 8, 2, 73-80 (2006).
 
22.
P. Lura, D. P. Bentz, D. A., Lange, K. Kovler, A. Bentur, K. van Breugel, Measurement of water transport from saturated pumice aggregates to hardening cement paste. Materials and Structures, 39, 9, 861-868 (2006).
 
23.
P. L. Maier, S. A. Durham, Benefi cial use of recycled materials in concrete mixtures. Construction and Building Materials, 29, 428-437 (2012).
 
24.
J. O. E. L. Manasseh, Use of crushed granite fi ne as replacement to river sand in concrete production. Leonardo electronics journal of practice and technologies, 17, 85-96 (2010).
 
25.
G. Mang’uriu, R. Mutku, W. Oyawa, S. Abuodha, Properties of Pumice Lightweight Aggregate. Civil and Environmental Research, 2, 10, 58-67 (2012).
 
26.
A. P. Martinez Ruiz, Factibilidad de uso de micropilotes construidos con piedra pomez de mala calidad. Factibilidad de uso de micropilotes construidos con piedra pomez de mala calidad, p. 228, Unpublished Thesis, Universidad de la Fuerzas Armadas ESPE, Sangolqui 2014.
 
27.
P. K. Mehta, P. K. Mehta, Concrete. Structure, properties and materials, p. 450, Prentice-Hall 1986.
 
28.
L. Minapu, M. Ratnam, U. Rangaraju, 2014: Experimental Study on Light Weight Aggregate Concrete with Pumice Stone, Silica Fume and Fly Ash as a Partial Replacement of Coarse Aggregate. International Journal of Innovative Research in Science, p. 18130-18138, Engineering and Technology, IJIRSET, 2014.
 
29.
L. J. Murdock, G. F. Blackledge, K. Brook, K. M. Brook, Concrete materials and practice, p. 444, Hodder Arnold 1979.
 
30.
F. Pardo Casas, P. Molnar, Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics, 6, 3, 233-248 (1987).
 
31.
T. Parhizkar, M. Najimi, A. R. Pourkhorshidi, Application of pumice aggregate in structural lightweight concrete. Asian Journal of Civil Engineering, 13, 1, 43-54 (2012).
 
32.
H. Parra, M. B. Benito, J. M. Gaspar-Escribano, Seismic hazard assessment in continental Ecuador. Bulletin of Earthquake Engineering, 1-31 (2016).
 
33.
J. L. Pindell, S. F. Barrett, Geological evolution of the Caribbean region: a plate tectonic perspective. The Caribbean region: Boulder, Colorado, Geological Society of America, Geology of North America, v. H, 405-432, 1990.
 
34.
L. Quintero Ortiz, J. Herrera, L. Corzo, J. Garcia, Relationship between the resistance to compression and the porosity of the concrete evaluated from ultrasonic parameters (in Spanish). Revista ION, 24, 69-76, 2011.
 
35.
V. Ramasamy, R. Muralitharan, Basic Properties of Pumice Aggregate. International Journal of Earth Sciences and Engineering, VIII, 4, 256-258 (2015).
 
36.
M. Segura Castruita, C. Ortiz Solorio, M. Gutiérrez Castorena, Location of residual moisture soils from satellte images (In Spanish). Tierra Latinoamericana, 21, 149-156 (2003).
 
37.
C. Syverson, Market structure and productivity: A concrete example (No. w10501). National Bureau of Economic Research 2004.
 
38.
D. Tiab, E. C. Donaldson, Petrophysics: theory and practice of measuring reservoir rock and fl uid transport properties, p. 882, Gulf professional publishing 2015.
 
39.
T. Toulkeridis, K. Chunga, W. Renterí a, F. Rodriguez, F. Mato, S. Nikolaou, M. C. D’Howitt, D. Besenzon, H. Ruiz, H. Parra, X. Vera-Grunauer, The 7.8 Mw earthquake and tsunami of 16th April 2016 in Ecuador: Seismic Evaluation, Geological Field Survey and Economic Implications. Science of Tsunami Hazards, 36, 4, 197-242 (2017).
 
40.
G. P. L.Walker, Plinian eruptions and their products. Bulletin Volcanologique, 44, 3, 223-240 (1981).
 
ISSN:1425-8129
Journals System - logo
Scroll to top