The action of hydrated lime on the durability of energy-efficient asphalt concrete
 
More details
Hide details
1
Department of Building Engineering Technologies and Organization, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Poland
 
2
Department of Highway and Environmental Engineering, Faculty of Civil Engineering, University of Žilina, Slovak Republic
 
 
Submission date: 2023-10-29
 
 
Final revision date: 2024-11-11
 
 
Acceptance date: 2025-03-13
 
 
Publication date: 2025-03-19
 
 
Corresponding author
Mateusz Marek Iwański   

Department of Building Engineering Technologies and Organization, Faculty of Civil Engineering and Architecture, Kielce University of Technology, Kielce, Poland
 
 
Cement Wapno Beton 29(5) 344-359 (2024)
 
KEYWORDS
TOPICS
ABSTRACT
The main priority in road construction is to reduce the energy consumption in the production of mineral-asphalt mixtures used for the upper layers of pavement structures. The most effective technology in this regard is the use of water-foamed bitumen. It allows for the production of water-foamed binders from which asphalt mixtures are made using a “half warm mix” technology at temperatures 40 °C to 60 °C lower than traditional production. In the research, AC 8S asphalt concrete was used, made with 50/70 bitumen. The proper foaming of bitumen 50/70 were achieved by using a surface active agent. Hydrated lime was also used as a substitute for part of the mineral filler in the asphalt mixture. The aim of the research was to determine the operational durability parameters of asphalt concrete, such as intermediate tensile strength in the temperature range from -10 °C to +40 °C, and resistance to permanent deformations. Using Harrington’s utility function, the optimal content of hydrated lime and foamed asphalt was determined based on the required durability of asphalt concrete. The obtained effect is a consequence of the synergy between hydrated lime and foamed bitumen in the AC 8S mixture made using the “half warm mix” technology.
REFERENCES (35)
1.
B. Hofko, M. Dimitrov, O. Schwab, R. Weiss, H. Rechberger, H.; Grothe, Technological and environmental performance of temperature-reduced mastic asphalt mixtures. Road Mater. Pavement Des., 18, 22–37 (217).
 
2.
E. Sanchez-Alonso, A. Vega-Zamanillo, D. Castro-Fresno, M. Del Rio-Prat, Evaluation of copactability and mechanical properties of bituminous mixes with warm additives. Constr. Build. Mater. 25, 2304–2311, (2011), doi: 10.1016/j.conbuildmat.2010.11.024.
 
3.
Z. Leng, A. Gamez, I.L. Al-Qadi, Mechanical property characterization of warm-mix asphalt prepared with chemical additives. J. Mater. Civ. Eng. 26, 304–311, (2014), doi:10.1061/(ASCE)MT.1943-5533.0000810.
 
4.
A. Woszuk, W. Franus, A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Appl. Sci. 7, 293 (2017); doi:10.3390/app7030293.
 
5.
K.J. Jenkins, Mix Design Considerations for Cold and Half-Warm Bituminous Mixes with on Foamed Bitumen”. PhD Dissertation, Department of Civil Engineering, Faculty of Engineering, University of Stellenbosch, Stellebosch, South Africa, 2000.
 
6.
P.J. Ruckel, S.M. Acott, R.H. Bowering, Foamed-Asphalt Paving Mixtures: Preparation of Design Mixes and Treatment of Test Specimens. In: Asphalt materials, mixtures, construction, moisture effects and sulfur, Washington, DC: TRB – Transportation Research Board, 1982, 911, National Research Council USA, p. 88-95.
 
7.
Wirtgen Cold Recycling Technology (1rd ed.). 2012. Windhagen: Wirtgen GmbH.
 
8.
M.M. Iwański, A. Chomicz-Kowalska, K. Maciejewski, Impact of Additives on the Foamability of a Road Paving Bitumen. IOP Conference Series: Materials Science and Engineering, 2019, Vol. 603, No. 3, pp. 1-10. doi:10.1088/1757-899X/603/4/042040.
 
9.
K.M. Muthen, Foamed Asphalt Mixes. Mix Design Procedure; Contract Report CR 98/077; SABITA Ltd&CSIR Transportek: Pretoria, South Africa, September 2009.
 
10.
M.M. Iwański, A. Chomicz-Kowalska, K. Maciejewski, Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics. Materials. 12, 1-21, 3514, (2019); http://dx.doi.org.:10.3390/ma1....
 
11.
X. Yu, Z. Leng,Z.; Y. Wang, S. Lin, Characterization of the effect of foaming water content on the performance of foamed crumb rubber modified asphalt. Constr. Build. Mater. 67, 279-284, (2014), doi.org/10.1016/j.conbuildmat.2014.03.046.
 
12.
J. Piłat, P. Radziszewski, Nawierzchnie asfaltowe: Podręcznik akademicki. (Asphalt Pavements; Academic handbook). WKiŁ: Warszawa, Poland, 2010. (in Polish).
 
13.
P.E. Seebaly, D.N. Litte, D.N., J.A. Epps, The Benefis of Hydrated Lime in Hot Mix Asphalt. The National Lime Association: Arlington, VA, USA. 2006.
 
14.
D. Lesueur, J. Petit, H-J. Ritter, The mechanism of hydrated lime modification of asphalt mixtures: a state-of-the-art review. Road Mater. Pavement Des. 14 (1), 1-16, (2012), http://dx.doi.org.: 10.1080/14680629.2012.743669.
 
15.
M. Iwański, A. Chomicz-Kowalska, M. M. Iwański, Influence of hydrated lime on durability of SMA asphalt pavement with quartzite aggregate. Structure and Environmental, 5, 4, 5-14, (2013).
 
16.
J. Zou, M. Isola, R. Roque, S. Chun, C. Koh, G. Lopp, Effect of hydrated lime on fracture performance of asphalt mixture. Constr. Build. Mater., 44, 302 – 308, (2013), http://dx.doi.org.:10.1016/j.c....
 
17.
M. Iwański, N.B. Uriew, The asphalt concrete as a composite material (with nanodisperse and polymer components). Moscow State Automobile and Road Technical University – Kielce Technical University (Poland). Moscow, Russia, 2007, p. 669.
 
18.
D. Lesueur , D.N. Little, Effect on hydrated lime on rheology, fracture and aging of bitumen. Transp. Res. Rec. 1661, 93-105, (1999).
 
19.
C. Gorkem, B. Sengoz, Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Constr. Build. Mater. 23, 2227-2236 (2009), http://dx.doi.org.: 10.1016/j.conbuildmat.2008.12.001.
 
20.
E. Remišová, M. Decký, M. Podolka, M. Kováč, T. Vondráčková, L. Bartuška; Frost Index from Aspect of Design of Pavement Construction in Slovakia. Procedia Earth Planet. Sci. 2015, 15, 3–10. doi:10.1016/j.proeps.2015.08.002.
 
21.
M. Iwański, G. Mazurek, The effect of hydrated lime on the rheological properties of extracted bitumen from Stone Mastic Asphalt. Cement Wapno Beton. 19, 81, 6, 376-383, (2014).
 
22.
M. Iwański, G. Mazurek, Applying of 2S2P1D model for assessing viscoelastic properties of bituminous binder extracted from SMA mixture with hydrated lime addition. Cem. Wapno Beton. 21, 2, 124-136, (2018).
 
23.
M.M. Iwański, Effect of Hydrated Lime on Indirect Tensile Stiffness Modulus of Asphalt Concrete Produced in Half-Warm Mix Technology. Materials, 13, 210, 4731, (2020).
 
24.
M.M. Iwański, A. Chomicz-Kowalska, K. Maciejewski, Resistance to Moisture Induced Damage of Half Warm Mix Asphalt Concrete with Foamed Bitumen. Materials, 13, 654;1-29, (2020), http://dx.doi.org.:10.3390/ma1....
 
25.
WT-2 2014. Asphalt mixes. Technical Requirements. Appendix to ordinance No. 54 of the General Director of National Roads and Highways, 8.11.2014. 2014.
 
26.
Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych”, GDDKiA, Poland, Warsaw, 2014, p.112.
 
27.
Z. Owsiak, P. Czapik, J. Zapała-Słweta, Properties of a Three-Component Mineral Road Binder for Deep-Cold Recycling Technology. Materials, 13, 16, 1-13, (2020), https://doi.org/10.3390/ma1316....
 
28.
WT-1 2014. Aggregates Technical Requirements. Aggregates for mineral-asphalt mixtures and surface reinforcements on national roads. Appendix to ordinance No. 46 of the General Director of National Roads and Highways, Poland, Warsaw, 2014.
 
29.
Ž.R. Lazić, 2004. Design of experiments in chemical engineering: a practical guide. Wiley-VCH, Weinheim ; [Germany].
 
30.
D.G. Montgomery, 2001. Design and Analysis of Experiments. John Wiley & Son, 5th Edition, 684.
 
31.
STATISTICA 13.3. Statsoft. Available online: www.statsoft.com (accessed on 20 August 2019).
 
32.
G.F. Piepel, J.A. Cornell, Mixture Experiment Approaches: Examples, Discussion, and Recommendations. Journal of Quality Technology, 26 (3), 177–196, (1994), https://doi.org/10.1080/002240....
 
33.
D. Steuer, 1999. Multi-Criteria-Optimisation and Desirability Indices. Technical Report / Universität Dortmund SFB 475, No. 1999/20.
 
34.
J. Harrington, The desirability function. Industrial Quality Control, 21 (10), 494-498, (1965).
 
35.
K.J. Kim, J. Lin, Simultaneous optimization of mechanical properties of steel by maximizing desirability functions. Applied Statistics, 49 (3), 311-326, (2000).
 
ISSN:1425-8129
Journals System - logo
Scroll to top