This study has been carried out under the framework of the strategic plan (2011-2013) of Territory, Environment and Construction Centre (C-TAC/UM), PEst-OE/ECI/UI4047/2011, approved by the Portuguese Foundation for Science and Technology (FCT).
REFERENCES(41)
1.
ACI Committee 232, Use of fl y ash in concrete. ACI committee report 23.
2R-96. ACI, April, p. 34 (1996). 2. ACI Committee 363, State-of-the-art report on high strength concrete. ACI committee report 363R-92. ACI, September, p. 55 (1992).
J. L. Alonso, K. Wesche, Characterization of fl y ash. Fly ash in concrete: properties and performance, Report of technical committee 67-FAB – use of fl y ash in building (K. Wesche ed.) RILEM, E&FN SPON, pp. 3-23 (1991).
B.-T. Chen, T.-P. Chang, J.-Y. Shih, J.-J. Wang, Estimation of exposed temperature for fi re-damaged concrete using support vector machine. Computational Materials Science, 44, 3, pp. 913-920 (2009).
P. Cortez, Data mining with neural networks and support vector machines using the R/rminer Tool. Proceedings of 10th Industrial Conference on Data Mining, Advances in Data Mining, Applications and theoretical aspects. (P. Perner (ed.). Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 572-583 (2010).
U. Fayyad, G. Piatesky-Shapiro, P. Smyth, From data mining to knowledge discovery: an overview. In Advances in Knowledge Discovery and Data Mining (Fayyad et al. eds.). AAAI Press / The MIT Press, Cambridge MA, pp. 471-493 (1996).
S. M. Gupta, Support vector machines based modelling of concrete strength. Engineering and Technology, Word Academy of Science, 36, pp. 305-311 (2007).
K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich 2004. Available from: . [Accessed 7 August 2010].
R. C. Joshi, R. P. Lohtia (1997). Fly ash in concrete: production, properties and uses, Advances in Concrete Technology (V. M. Malhotra ed.), Volume 2, Gordon and Breach Science Publishers, p. 269, Ottawa, Ontario, Canada 1997.
J. Kasperkiewicz, J. Racz, A. Dubrawski, HPC strength prediction using artifi cial neural network. Journal of Computing in Civil Engineering, 9, 4, pp. 279-284 (1995).
R. Kewley, M. Embrechts, C. Brenemam, (2000). Data strip mining for the virtual design of pharmaceuticals with neural networks. IEEE Transations on Neural Networks, 11, 3, pp. 668-679 (2000).
J. K. Kim, Y. D. Park, K. Y. Sung, S. G. Lee, The production of highstrength fl y ash in Korea. 4th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete (V.M. Malhotra ed.), Supplementary papers, Istanbul. May 1992.
P. K. Mehta, Infl uence of fl y ash characteristics of the strength of Portland fl y ash mixtures. Cement and concrete research, Elsevier Science Ltd, Volume 15, Number 4, pp. 669-674, 1985.
D. Meyer, Support Vector Machines. The interface to libsvm in package e1071, 2010. Available from: http://cran.r-project.org/web/... vignettes/svmdoc.pdf. [Accessed 7 August 2010].
S. Mindess, (1994). Materials selection, proportioning and quality control. High performance concretes and applications (S.P. Shah and S.H. Ahmad ed.), Edward Arnold, pp. 1-25, London 1994.
P. Naproux, Les microcendres (cendres volantes traitées) et leur emploi dans les bétons hydrauliques. PhD Thesis. Institut National de Sciences Appliquées de Toulouse, France 1994.
F. Özcan, C. D. Atiş, O. Karahan, E. Uncuoğlu, H. Tanyildizi, Comparison of artifi cial neural network and fuzzy logic models for predicting of long-term compressive strength of silica fume concrete. Advances in Engineering Software, 40, pp. 856-863 (2009).
R Development Core Team. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3. Available from: . [Accessed 7 August 2010].
Ruan Xiang, Prediction of concrete carbonation depth based on support vector regression. Third International Symposium on Intelligent Information Technology Application, iita, vol. 3, pp. 172-175, 2009.
M. Saridemir, Prediction of compressive strength of concretes containing metakaolin and silica fume by artifi cial neural networks. Advances in Engineering Software, 40, pp. 350-355 (2009).
R. Swamy, Fly ash and slag: standards and specifi cations – help or hindrance? Materials and structures / Matériaux et constructions, 26, pp. 600-613 (1993).
I. B. Topçu, M. Saridemir, Prediction of compressive strength of concrete containing fl y ash using artifi cial neural networks and fuzzy logic. Computation Materials Science, 41, pp. 305-311 (2008).
V. Waller, P. Naproux, F. de Larrard, Contribution des fumées de silice et des cendres volantes silico-alumineuses à la résistance en compression du béton. Quantifi cation. Bulletin des Laboratoires des Ponts et Chaussées. 208. Mars-Avril – réf. 4098, pp. 53-65, 1997.
K. Wesche, Fly ash in concrete: properties and performance. Report of technical committee 67-FAB – use of fl y ash in building (K. Wesche ed.) RILEM, E&FN SPON, pp. 3-23, 1991.
D.-S. Yang, S.-K. Park, J.-H. Lee, A prediction on mix proportion factor and strength of concrete using neural network. KSCE Journal of Civil Engineering, 7 (5), pp. 525-536 (2003).
M. H. F. Zarandi, I. B. Türksen, J. Sobhani, A. A. Ramezanianpour, Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing, 8, 488-498, (2008).
L. Zhitao, H. Hongming, Z. Shengli, Research on support vector machine’s prediction of concrete carbonization. International Seminar on Business and Information Management, isbim, vol. 1, pp. 319-322, 2008.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.