Prediction of compressive strength of concrete containing fly ash using data mining techniques
 
More details
Hide details
1
Department of Civil Engineering, University of Minho, Guimarães, Portugal
 
 
Publication date: 2013-01-01
 
 
Cement Wapno Beton 18(1) 39-51 (2013)
 
ACKNOWLEDGEMENTS
This study has been carried out under the framework of the strategic plan (2011-2013) of Territory, Environment and Construction Centre (C-TAC/UM), PEst-OE/ECI/UI4047/2011, approved by the Portuguese Foundation for Science and Technology (FCT).
REFERENCES (41)
1.
ACI Committee 232, Use of fl y ash in concrete. ACI committee report 23.
 
2.
2R-96. ACI, April, p. 34 (1996). 2. ACI Committee 363, State-of-the-art report on high strength concrete. ACI committee report 363R-92. ACI, September, p. 55 (1992).
 
3.
J. L. Alonso, K. Wesche, Characterization of fl y ash. Fly ash in concrete: properties and performance, Report of technical committee 67-FAB – use of fl y ash in building (K. Wesche ed.) RILEM, E&FN SPON, pp. 3-23 (1991).
 
4.
A. Camões, (2002). High performance concrete incorporating fl y ash, PhD Thesis, University of Minho, p. 456 (2002).
 
5.
B.-T. Chen, T.-P. Chang, J.-Y. Shih, J.-J. Wang, Estimation of exposed temperature for fi re-damaged concrete using support vector machine. Computational Materials Science, 44, 3, pp. 913-920 (2009).
 
6.
C. Cortes, V. Vapnik, Support vector networks. Machine Learning. Kluwer Academic Publishers, 20, 3, pp. 273-297 (1995).
 
7.
P. Cortez, Data mining with neural networks and support vector machines using the R/rminer Tool. Proceedings of 10th Industrial Conference on Data Mining, Advances in Data Mining, Applications and theoretical aspects. (P. Perner (ed.). Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 572-583 (2010).
 
8.
Day, W. Ken, Concrete mix design, quality control and specifi cation. E&FN SPON, p. 350, London 1995.
 
9.
B. Efron, R. Tibshirani, In An Introduction to the Bootstrap. Chapman & Hall 1993.
 
10.
U. Fayyad, G. Piatesky-Shapiro, P. Smyth, From data mining to knowledge discovery: an overview. In Advances in Knowledge Discovery and Data Mining (Fayyad et al. eds.). AAAI Press / The MIT Press, Cambridge MA, pp. 471-493 (1996).
 
11.
E. Giergiczny, Z. Giergiczny, Cement Wapno Beton, 77, 157 (2010).
 
12.
S. M. Gupta, Support vector machines based modelling of concrete strength. Engineering and Technology, Word Academy of Science, 36, pp. 305-311 (2007).
 
13.
W. Halstead, Use of fl y ash in concrete. Transportation research board publication nº 127, Washington, p. 66, 1986.
 
14.
S. Haykin, Neural networks - a comprehensive foundation. 2nd ed. New Jersey: Prentice-Hall 1999.
 
15.
K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich 2004. Available from: . [Accessed 7 August 2010].
 
16.
S. Jalali, A study of factors affecting the mechanical behaviour of lime-fl y ash mixtures. Coventry Polytechnic, PhD Theses, February, p. 411, 1991.
 
17.
R. C. Joshi, R. P. Lohtia (1997). Fly ash in concrete: production, properties and uses, Advances in Concrete Technology (V. M. Malhotra ed.), Volume 2, Gordon and Breach Science Publishers, p. 269, Ottawa, Ontario, Canada 1997.
 
18.
J. Kasperkiewicz, J. Racz, A. Dubrawski, HPC strength prediction using artifi cial neural network. Journal of Computing in Civil Engineering, 9, 4, pp. 279-284 (1995).
 
19.
R. Kewley, M. Embrechts, C. Brenemam, (2000). Data strip mining for the virtual design of pharmaceuticals with neural networks. IEEE Transations on Neural Networks, 11, 3, pp. 668-679 (2000).
 
20.
J. I. Kim, D. K. Kim, Application of neural networks for estimation of concrete strength. KSCE Journal of Civil Engineering, 6, 4, pp. 429-438 (2002).
 
21.
J. K. Kim, Y. D. Park, K. Y. Sung, S. G. Lee, The production of highstrength fl y ash in Korea. 4th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete (V.M. Malhotra ed.), Supplementary papers, Istanbul. May 1992.
 
22.
S. Lai, M. Serra, Concrete strength prediction by means of neural network. Construction and Building Materials, 11, 2, 93-98 (1997).
 
23.
V. M. Malhotra, A. A. Ramezanianpour, Fly ash in concrete. 2nd edition, CANMET – Canada Centre for Mineral and Energy Technology, pp. 307, 1994.
 
24.
P. K. Mehta, Infl uence of fl y ash characteristics of the strength of Portland fl y ash mixtures. Cement and concrete research, Elsevier Science Ltd, Volume 15, Number 4, pp. 669-674, 1985.
 
25.
D. Meyer, Support Vector Machines. The interface to libsvm in package e1071, 2010. Available from: http://cran.r-project.org/web/... vignettes/svmdoc.pdf. [Accessed 7 August 2010].
 
26.
S. Mindess, (1994). Materials selection, proportioning and quality control. High performance concretes and applications (S.P. Shah and S.H. Ahmad ed.), Edward Arnold, pp. 1-25, London 1994.
 
27.
P. Naproux, Les microcendres (cendres volantes traitées) et leur emploi dans les bétons hydrauliques. PhD Thesis. Institut National de Sciences Appliquées de Toulouse, France 1994.
 
28.
A. M. Neville, (1995). Properties of concrete, Fourth edition, Longman Group Limited, p. 844, England 1995.
 
29.
H.-G. Ni, J.-Z. Wang, Prediction of compressive strength of concrete by neural networks. Cement and Concrete Research 30, 1245-1250 (2000).
 
30.
F. Özcan, C. D. Atiş, O. Karahan, E. Uncuoğlu, H. Tanyildizi, Comparison of artifi cial neural network and fuzzy logic models for predicting of long-term compressive strength of silica fume concrete. Advances in Engineering Software, 40, pp. 856-863 (2009).
 
31.
J. Quinlan, Induction of Decision Trees. Machine Learning, Kluwer Academic Publishers 1, pp. 81-106, 1986.
 
32.
R Development Core Team. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3. Available from: . [Accessed 7 August 2010].
 
33.
Ruan Xiang, Prediction of concrete carbonation depth based on support vector regression. Third International Symposium on Intelligent Information Technology Application, iita, vol. 3, pp. 172-175, 2009.
 
34.
M. Saridemir, Prediction of compressive strength of concretes containing metakaolin and silica fume by artifi cial neural networks. Advances in Engineering Software, 40, pp. 350-355 (2009).
 
35.
R. Swamy, Fly ash and slag: standards and specifi cations – help or hindrance? Materials and structures / Matériaux et constructions, 26, pp. 600-613 (1993).
 
36.
I. B. Topçu, M. Saridemir, Prediction of compressive strength of concrete containing fl y ash using artifi cial neural networks and fuzzy logic. Computation Materials Science, 41, pp. 305-311 (2008).
 
37.
V. Waller, P. Naproux, F. de Larrard, Contribution des fumées de silice et des cendres volantes silico-alumineuses à la résistance en compression du béton. Quantifi cation. Bulletin des Laboratoires des Ponts et Chaussées. 208. Mars-Avril – réf. 4098, pp. 53-65, 1997.
 
38.
K. Wesche, Fly ash in concrete: properties and performance. Report of technical committee 67-FAB – use of fl y ash in building (K. Wesche ed.) RILEM, E&FN SPON, pp. 3-23, 1991.
 
39.
D.-S. Yang, S.-K. Park, J.-H. Lee, A prediction on mix proportion factor and strength of concrete using neural network. KSCE Journal of Civil Engineering, 7 (5), pp. 525-536 (2003).
 
40.
M. H. F. Zarandi, I. B. Türksen, J. Sobhani, A. A. Ramezanianpour, Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing, 8, 488-498, (2008).
 
41.
L. Zhitao, H. Hongming, Z. Shengli, Research on support vector machine’s prediction of concrete carbonization. International Seminar on Business and Information Management, isbim, vol. 1, pp. 319-322, 2008.
 
ISSN:1425-8129
Journals System - logo
Scroll to top