Volumetric stability and elastic properties of concrete subjected to simulated service exposure conditions on road pavements
More details
Hide details
1
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Publication date: 2023-04-13
Cement Wapno Beton 27(6) 412-426 (2022)
KEYWORDS
ABSTRACT
Expressway and highway pavements are exposed to intensive impacts of exploitation, including heavy vehicle traffic and environmental factors such as temperature and moisture along with the aggression of de-icing agents. Proper selection of mineral aggregates and design of the concrete mixture composition are important for the durability of the concrete pavement. Experimental tests were conducted on concrete under simulated service exposure conditions with external exposure to a 3% sodium chloride solution. The subject of the research was the expansion and elastic properties of air-entrained concrete made with siliceous aggregates from rocks containing moderate amounts of reactive minerals. The category of reactivity of coarse aggregates was uncertain, and in the fine aggregate was moderately reactive quartz sand. Under simulated service exposure conditions on road pavements, the significant expansion of concrete specimens and a significant decrease in the resonance elastic modulus up to 12.5% were observed. The tendency of concrete to expand was related to the presence of reaction products of reactive silica in the aggregate grains with sodium and potassium hydroxides in the cement paste [ASR], confirmed by microscopic observations. Replacement of Portland cement with CEM II/A-V 42.5 N cement and CEM II/B-S 42.5 N cement significantly reduced concrete expansion and improved the stability of elastic properties. In two of the nine concrete mixtures, the selected content of siliceous fly ash and
granulated blast furnace slag, 18% and 30%, respectively, turned out to be sufficient to counteract the deleterious effects of the ASR
under conditions of external contact with sodium chloride solution. A practical method for predicting the durability of concrete in the
conditions in which the reactivity category of the aggregate from local natural resources is uncertain was established.
ACKNOWLEDGEMENTS
The research was supported by the Project “Alkali-Aggregate Reactivity of Domestic Aggregates” [RID-I-37] funded by the National Centre for Research and Development [NCBiR] and the General Directorate for National Roads and Highways [GDDKiA] in Poland. Authors express their thanks to prof. Daria Jóźwiak-Niedźwiedzka for support in SEM microscopic analysis.
REFERENCES (31)
1.
A. Glinicki, M.A. Glinicki, Quality assurance methods applied for exposed-aggregate concrete pavement construction. 12th International Conference on Concrete Pavements, 2021-09-27/10-01, Minneapolis, USA, 82-89 (2021).
https://doi.org/10.33593/mczou....
2.
PN-EN 206+A2:2021-08 Beton - Wymagania, właściwości użytkowe, produkcja i zgodność.
3.
PN-B-06265:2022-08 Beton - Wymagania, właściwości użytkowe, produkcja i zgodność - Krajowe uzupełnienie PN-EN 206+A2:2021-08.
4.
CEN/TR 16349:2012 Framework for a specification on the avoidance of a damaging Alkali-Silica Reaction (ASR) in concrete (2012).
5.
R. Przondziono, J.J. Timothy, F. Weise, E. Krütt, R. Breitenbücher, G. Meschke, M. Hofmann, Degradation in concrete structures due to cyclic loading and its effect on transport processes - Experiments and modeling. Struct. Concrete, 18(4), 519-527 (2017).
https://doi.org/10.1002/suco.2....
6.
R. Breitenbücher, R. Przondziono, Sustainability of concrete pavements considering traffic and de-icing agents. Acta Polytechnica CTU Proceedings, 33, 45-51 (2022).
https://doi.org/10.14311/APP.2....
7.
T. Katayama, M. Tagami, Y. Sarai, S. Izumi, T. Hira, Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan. Mater. Charact. 53, 2-4, 105-122 (2004).
https://doi.org/10.1016/j.matc....
8.
C. Giebson, K. Seyfarth, H.M. Ludwig, Influence of sodium chloride on ASR in highway pavement concrete. In: H.M. Bernardes, N.P. Hasparyk, eds. 15th International Conference on Alkali-Aggregate Reaction, 3-7 July 2016, Sao Paulo, Brazil (2016).
9.
I. Fernandes, Ö. Andiç-Çakir, C. Giebson, K. Seyfarth, Mainland Europe, Turkey and Cyprus, In: Alkali-Aggregate Reaction in Concrete: A World Review. Edited by I. Sims, A.B. Poole, CRC Press, London, 321-432, 2017.
10.
J. Stark, K. Seyfarth, Assessment of Specific Pavement Concrete Mixtures by Using an ASR Performance-Test. Proceedings, 13th International Conference on Alkali-Aggregate Reaction in Concrete, 16-20 June 2008, Trondheim, Norway (2008).
11.
Ł. Kotwica, K. Florek, Wpływ soli litu na reakcję krzemionki ze związkami sodu w zaprawach z cementu glinowego poddanych korozji w roztworach środków odladzających. Cem. Wapno Beton, 24, 1, 65-67 (2019).
https://doi.org/10.32047/CWB.2....
12.
Z. Owsiak, J. Zapała, P. Czapik, Rozpoznanie przyczyn reakcji kruszywa żwirowego z alkaliami w betonie. Cem. Wapno Beton, 17(3), 149-154 (2012).
13.
W. Kurdowski, D. Pakłos, Zastosowanie CEM I 52,5 R-NA do produkcji podkładów strunobetonowych. Konferencja Dni Betonu, Tradycja i nowoczesność, 11-13.10.2010, Wisła (2010).
14.
C. Müller, I. Borchers, E. Eickschen, Experience with ASR test methods: advice on obtaining practical evaluation criteria for performance testing and aggregate testing. Cem. Int. 11, 3, 86-93 (2013).
15.
Procedura Badawcza GDDKiA PB/5/18 Określenie potencjalnej reaktywności mieszaniny kruszyw mineralnych w betonie w warunkach cyklicznego oddziaływania temperatury 60°C i zewnętrznego dostępu alkaliów. GDDKiA (2019).
https://www.gov.pl/web/gddkia/....
16.
PN-EN 12620+A1:2010 Kruszywa do betonu.
17.
Warunki wykonania i odbioru robót budowlanych. D-05.03.04 v02, Nawierzchnia z betonu cementowego (dokument wzorcowy). Generalna Dyrekcja Dróg Krajowych i Autostrad (2019).
18.
PN-EN 197-1:2012 Cement - Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.
19.
Procedura Badawcza GDDKiA PB/2/18 Instrukcja badania reaktywności kruszyw w temperaturze 38°C według ASTM C1293/RILEM AAR-3. GDDKiA (2019).
https://www.gov.pl/web/gddkia/....
20.
Procedura Badawcza GDDKiA PB/1/18 Instrukcja badania reaktywności kruszyw metodą przyśpieszoną w 1 M roztworze NaOH w temperaturze 80°C. GDDKiA (2019).
https://www.gov.pl/web/gddkia/....
21.
D. Jóźwiak-Niedźwiedzka, A. Antolik, K. Dziedzic, P. Lisowski, Potencjalna reaktywność alkaliczna piasku z krajowych złóż. Roads and Bridges - Drogi i Mosty, 21, 3, 253-271 (2022).
https://doi.org/10.7409/rabdim....
22.
Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich. GDDKiA (2019).
https://www.gov.pl/web/gddkia/....
23.
ASTM C1293, Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction. ASTM International.
24.
M.A. Glinicki, K. Bogusz, D. Jóźwiak-Niedźwiedzka, M. Dąbrowski, ASR performance of concrete at external alkali supply - effects of aggregate mixtures and blended cement. Int. J. Pavement Eng. 4, 1 (2023).
https://doi.org/10.1080/102984....
25.
AASHTO R 80-17, Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction. Standard by American Association of State and Highway Transportation Officials (2021).
26.
C.F. Dunant, K.L. Scrivener, Effects of aggregate size on alkali–silica-reaction induced expansion. Cement Concrete Res. 42, 6, 745–751 (2012).
https://doi.org/10.1016/j.cemc....
27.
M.D.A. Thomas, B. Fournier, K. Folliard, J. Ideker, M. Shehata, Test methods for evaluating preventive measures for controlling expansion due to alkali–silica reaction in concrete. Cement Concrete Res. 36, 10, 1842-1856 (2016).
https://doi.org/10.1016/j.cemc....
28.
C. Giebson, K. Voland, H.M. Ludwig, B. Meng, Alkali-silica reaction performance testing of concrete considering external alkalis and preexisting microcracks. Struct. Concrete, 18, 528–538 (2017).
https://doi.org/10.1002/suco.2....
29.
P.M. Dove, S.F. Elston, Dissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25°C. Geochim. Cosmochim. Ac. 56, 12, 4147-4156 (1992).
https://doi.org/10.1016/0016-7....
30.
S. Zhang, Y. Liu, Molecular-level mechanisms of quartz dissolution under neutral and alkaline conditions in the presence of electrolytes. Geochem. J. 48, 2, 189-205 (2014).
https://doi.org/10.2343/geoche....
31.
Z. Owsiak, P. Czapik, Zbadanie wpływu dodatku clinoptilolitu na zmniejszenie ekspansji zapraw z kruszywem reaktywnym. Cem. Wapno Beton, 19, 3, 152-157 (2014).