Concrete mixing at elevated temperature: workability, strength and durability
,
 
 
 
 
More details
Hide details
1
Department of Engineering for Innovation, University of Salento, Lecce, Italy
 
2
Studio Mairo, Roma, Italy
 
 
Publication date: 2015-03-01
 
 
Cement Wapno Beton 20(2) 115-129 (2015)
 
KEYWORDS
REFERENCES (59)
1.
M. A. Abd-El Aziz, S. AbdEl.Aleem, M. Heikal, Physico-chemical and mechanical characteristics of pozzolanic cement pastes and mortars hydrated at different curing temperatures. Constr. Build. Mater., 26, 1, 310-316 (2012).
 
2.
C. M. Aldea, F. Young, K. Wang, S. P. Shah, Effects of curing conditions on properties of concrete using slag replacement. Cem. Concr. Res., 30, 3, 65-472 (2000).
 
3.
R. F. M. Bakker, Permeability of Blended Cement Concretes. In: Fly Ash, Silica Fume, Slag & Other Mineral By-Products in Concrete. ACI SP-79 Vol I, 589-605, Ed. V. M. Malhotra 1983.
 
4.
R. Barbarulo, H. Peycelon, S. Leclercq, Chemical equilibria between C–S–H and ettringite, at 20 and 8.
 
5.
Cem. Concr. Res., 37, 7, 1176-1181 (2007). 5. S. J. Barnett, M. N. Soutsos, S. G. Millard, J. H. Bungey, Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cem. Concr. Res., 36, 3, 434-440 (2006).
 
6.
H. Binici, O. Aksogân, Sulfate resistance of plain and blended cement. Cem. Concr. Compos., 28, 1, 39–46 (2006).
 
7.
Ö. Çakır, F. Aköz, Effect of curing conditions on the mortars with and without GGBFS, Constr. Build. Mater., 22 3, 308–314 (2008).
 
8.
F. Cassagnabère, M. Mouret, G. Escadeillas, Early hydration of clinker–slag–metakaolin combination in steam curing conditions, relation with mechanical properties, Cem. Concr. Res., 39, 12, 1164–1173 (2009).
 
9.
J.-K. Chen, M.-Q. Jiang, Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion. Constr. Build. Mater., 23, 2, 812–816 (2009).
 
10.
M. Collepardi, A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos., 25, 4-5, 401–407 (2003).
 
11.
M. Collepardi, Reply to Discussion by W.G. Hime on “A state-of-the-art review of delayed ettringite attack on concrete” [Cem. Concr. Compos., 25, 4-5, 401-407 (2003)] Cem. Concr. Compos., 26 6, 755 (2004).
 
12.
Y. Dan, T. Chikada, K. Nagahama, Properties of steam cured concrete used with ground granulated blast-furnace slag. CAJ Proceedings of Cement and Concrete, No 45, 222-227 (1991).
 
13.
S. O. Ekolu, M. D. A. Thomas, R. D. Hooton, Pessimum effect of externally applied chlorides on expansion due to delayed ettringite formation: Proposed mechanism. Cem. Concr. Res., 36, 4, 688-696 (2006).
 
14.
Y. Elakneswaran, T. Nawa, K. Kurumisawa, Zeta potential study of paste blends with slag. Cem. Concr. Compos., 31, 1, 72-76 (2009).
 
15.
T. K. Erdem, L. Turanli, T. Y. Erdogan, Setting time: an important criterion to determine the length of the delay period before steam curing of concrete. Cem. Concr. Res., 33, 5, 741-745 (2003).
 
16.
J. I. Escalante-Garcia, J. H. Sharp, Effect of temperature on the hydration of the main clinker phases in portland cements: part ii, blended cements. Cem. Concr. Res., 28, 9, 1259-1274 (1998).
 
17.
K. Ezziane, A. Bougara, A. Kadri, H. Khelafi , E. Kadri, Compressive strength of mortar containing natural pozzolan under various curing temperature. Cem. Concr. Comp., 29, 8, 587-593 (2007).
 
18.
C. Famy, PhD Thesis, Imperial College, Materials Department, London 1999.
 
19.
M. L. Gambhir, Concrete Technology – Theory and Practice, p. 344, Fourth Edition, Publ. Tata McGraw Hill, New Dehli 2009.
 
20.
H. Y. Ghorab, D. Heinz, U. Ludwig, T. Meshendahl, A. Wolter, 7th ICCC Paris, vol. IV, p. 496, Paris 1980.
 
21.
Z.-M. He, G.-C. Long, Y.-J. Xie, J.-Z. Liu, Water sorptivity of steam curing concrete. Jianzhu Cailiao Xuebao/Journal of Building Materials, 15, 2, 190-195 (2012) Cited By in Scopus.
 
22.
J. Hill, J. H. Sharp, The mineralogy and microstructure of three composite cements with high replacement levels. Cem. Concr. Compos., 24, 2, 191-199 (2002).
 
23.
E. Holt, M. Leivo, Cracking risks associated with early age shrinkage. Cem. Concr. Compos., 26, 5, 521–530 (2004).
 
25.
Z. Jiang, H. Xu, P. Wang, G. Long, Y. Xie, Hydration process of compound cementitious materials under steam curing condition. J. Chin. Ceram. Soc., 38, 9, 1702-1706 (2010).
 
26.
K. J. Kim, S. H. Han, Y. S. Song, Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results. Cem. Concr. Res., 32, 7, 1087-1094 (2002).
 
27.
W. A. Klemm, F. M. Miller, 10th ICCC Goeteborg, vol. IV, paper 4IV059, Goeteborg 1997.
 
28.
Kulkarni, SB., Pereira, C. Signifi cance of Curing of Concrete for Durability of Structures. NBM Construction information. India’s No 1 NBMCW August 2011.
 
29.
B. Liu, Y. Xie, J. Li, Infl uence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cem. Concr. Res., 35, 5, 994-998 (2005).
 
30.
F. W. Locher, 7th ICCC, General Report, Theme II, IV49, Paris 1980.
 
31.
G. C. Long, Z. M. He, A. Omran, Heat damage of steam curing on the surface layer of concrete. Mag. Concr. Res., 64, 11, 995-1004 (2012).
 
32.
B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cem. Concr. Res., 37, 4, 483-491 (2007).
 
33.
P. K. Mehta, D. Manmohan, 7th ICCC, Paris vol. III, p. VII-1, Paris 1980.
 
34.
I. Meland, H. Justnes, J. Lindgärd, Durability problems related to delayed ettringite formation and/or alkali aggregate reactions. Proc. 10th ICCC Goethenburg, paper 4iv064, Goethenburg 1997.
 
35.
W. H. Mirza, S. I. Al-Noury, W. H. Al-Bedawi, Temperature Effect on Strength of Mortars and Concrete Containing Blended Cements. Cem. Concr. Compos., 13, 3, 197-202 (1991).
 
36.
A. M. Neville, Properties of Concrete. Pp. 483-4, Fourth Edition. Essex, England, Longman Group Limited 1995.
 
37.
R. E. Oberholster, J. H. P. Wan Aaardt, M. P. Brandt, in “Structure and Performance of Cements (ed P. Barnes) s. 365, Appl. Science Publ., London 1983.
 
38.
S. S. Park, S. J. Kwon, S. H. Jung, S. W. Lee, Modeling of water permeability in early aged concrete with cracks based on micro pore structure. Constr. Build. Mater., 27, 1, 597-604 (2012).
 
39.
A. Pavoine, X. Brunetaud, L. Divet, The impact of cement parameters on Delayed Ettringite Formation. Cem. Concr. Compos., 34, 4, 521–528 (2012).
 
40.
A. Pavoine, L. Divet, S. Fenouillet, A concrete performance test for delayed ettringite formation: Part I optimization. Cem. Concr. Res., 36, 12, 2138-2143 (2006).
 
41.
J. Plank, C. Hirsch, Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem. Concr. Res., 37 4, 537-542 (2007).
 
42.
V. S. Ramachandran, N. P. Mailvaganam, New Developments in Chemical Admixtures, in Advances in Concrete Technology, 859-898, Ed. V. M. Malhotra 1992. Canmet. Canada 1992.
 
43.
T. Ramlochan, M. D. A. Thomas, R. D. Hooton, The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part II: Microstructural and microchemical investigations. Cem. Concr. Res., 34 8, 1341-1356 (2004).
 
44.
T. Ramlochan, P. Zacarias, M. D. A. Thomas, R. D. Hooton, The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part I: Expansive behavior. Cem. Concr. Res., 33, 6, 807-814 (2003).
 
45.
E. Rozière, A. Loukili, R. El Hachem, F. Grondin, Durability of concrete exposed to leaching and external sulphate attacks. Cem. Concr. Res., 39, 12, 1188-1198 (2009).
 
46.
F. Sajedi, H. A. Razak, Comparison of different methods for activation of ordinary Portland cement-slag mortars. Constr. Build. Mater., 25, 1, 30-38 (2011).
 
47.
G. Sant, The infl uence of temperature on autogenous volume changes in cementitious materials containing shrinkage reducing admixtures. Cem. Concr. Compos., 34, 7, 855-865 (2012).
 
48.
I. Soroka, C. H. Jaegermann, A. Bentur, Short-term steam-curing and concrete later-age strength. Mater. Struct., 11, 2, 93-96 (1978).
 
49.
H. F. W. Taylor, C. Famy, K. L. Scrivener, Delayed ettringite formation. Cem. Concr. Res., 31, 5, 683-693 (2001).
 
50.
H. F. W. Taylor, Cement Chemistry, Acad. Press, London 1991.
 
51.
P. Termkhajornkit, R. Barbarulo, Modeling the coupled effects of temperature and fi neness of Portland cement on the hydration kinetics in cement paste. Cem. Concr. Res., 42 3, 526–538 (2012).
 
52.
K. Tosun, B. Baradan, Effect of ettringite morphology on DEF-related expansion. Cem. Concr. Compos., 32, 4, 271–280 (2010).
 
53.
P. J. Wainwright, Properties of fresh and hardened concrete incorporating slag cements. In Cement Replacement Materials, pp. 108-109, Ed. R.N. Swamy 1986.
 
54.
W. Wieker, K. L. Scrivener, 9th ICCC New Delhi, vol. I, p. 449, New Delhi 1992.
 
55.
W. Wieker, R. Herr, H. Schubert, Proc. Int. Coll. “Corrosion of cement paste”, Mogilany 16-17 November (ed. W. Kurdowski), p. 3, Kraków 1994.
 
56.
H. Yazici, M. Y. Yardımcı, S. Aydın, A. S. Karabulut, Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Constr. Build. Mater., 23, 3, 1223–1231 (2009).
 
57.
B. Yilmaz, Effects of molecular and electrokinetic properties of pozzolans on hydration, ACI Mater J., 106, 2, 128-137 (2009).
 
58.
C. Yu, W. Sun, K. Scrivener, (2013) Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem. Concr. Res., 43, 1, 105–111 (2013).
 
59.
K. S. You, J. W. Ahn, K. H. Lee, S. Goto, Effects of crystallinity and silica content on the hydration kinetics of 12CaO•7Al2O3. Cem. Concr. Compos., 28, 2, 119-123 (2006).
 
ISSN:1425-8129
Journals System - logo
Scroll to top