Alkali activated clay of moderate kaolin content
,
 
,
 
 
 
More details
Hide details
1
Institute of Graduate Studies and Research, Alexandria University, Shatby, Egypt
 
2
Faculty of Science, Helwan University, Cairo, Egypt
 
These authors had equal contribution to this work
 
 
Publication date: 2019-02-04
 
 
Cement Wapno Beton 24(1) 33-44 (2019)
 
ABSTRACT
Metakaolin clay of 30% reactive silica was alkali activated by blends of sodium silicate and sodium hydroxide using Na2O/Al2O3 = 1.2 to 1.7 and H2O/Na2O = 10 to 6. at room temperature. The geopolymer pastes obtained was investigated for durations up to one year. In spite of the relatively low SiO2/Al2O3 ratio of 2.06, 3 days and one year strength of 39 and 80 MPa are obtained at Na2O/Al2O3 = 1.4 and H2O/Na2O ~ 8. A successful prototype of geopolymer concrete building was realized to introduce the geopolymer application in Egypt. A geopolymer concrete foundation with 3-days and 28-days strength of 11 and 35 MPa was achieved with lower ratios than those used in the pastes and an with increased amount of water to insure the workability. The results are good reference for the achievement of geopolymer construction of better properties in the future, in Egypt.
REFERENCES (24)
1.
EN 196-5: Methods of testing cement: part 5: Pozzolanicity test for pozzolanic cement.
 
2.
C. J. McConville, W. E. Lee, Microstructureal on Firing illite and smectite clays compared with that of kaolinite. Journal American Ceramic Society, 88, 8, 2005. Doi.org/10.1111/j.1551-2916.2005.00390.
 
3.
Liang Chen, Zaiqin Wang, Yuanyi Wang, Jing Feng, Preparation and properties of alkali activated metakaolin-based geopolymer. Materials, 9, 9, 767; doi: 10.3390/ma9090767.
 
4.
Y. Zang, W. Zhang, W. Z. Sun, Li, Z. Liu, Preparation of metakaolin based geopolymer and its three dimensional pore structure characterization. J. Wuhan Univ. Technol. Mater. Sci. Ed., 30, 550-555 (2015).
 
5.
R. Arellano-Aguilar, O. Burciaga-Diaz, A. Gorokhovsky, J. I. Escalante- -Garcia, Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate: Binder ratio. Constr. Build. Mat., 50, 642-648, (2014). DOI: 10.1016/j. conbuildmat.2013.10.023.
 
6.
M. A. Villaquiran-Caicedo, R. Meja-de Gutierrez: Synthesis of ternary greopolymers based on metakaolin, boiler slag and rice husk ash. DYNA, 82, 194, 104-110 (2015).
 
7.
M. L. Granizo, M. T. Blanco-Varela, A. Palomo, Infl uence of the starting kaolin on alkali-activated materiald based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry, J. of Materials Science, 35, 6309-6315 (2000).
 
8.
F. F. B. Valeria, J. D. M. Kemeneth, T. Clelio, Synthesis and characterization of materials based on inorganic polymers of Alumina and silica, Sodium polysialate polymers (J). International Journal of Inorganic Materials, 2, 4, 309-317 (2000).
 
9.
D. Akolekar, A. Chaffee, F. H. Russel, The transformation of kaolin to low –silica X zeolite . Zeolites, , 19, 5, 356-365 (1997).
 
10.
. Y. S. Zang, W. Sun, Z. J. Li, Preparation and microstructure characterization of poly-sialate-disiloxo type of geopolymeric cement, J. Cent. South Univ. Technol., 16, 0906-0913 (2009).
 
11.
. M. A. Soleimani, R. Naghizadeh, A. R. Mirhabibi, F. Golestanifard: Effect of calcination temperature of the kaolin and molar Na2O/SiO2 activator ratio on physical and microstructural properties of metakaolin based geopolymers. Iranian Journal of Materials Science & Engineering, 9, 4 (2012).
 
12.
H. K. Tchakoute, K. C. H. Ruescher, S. Kong, E. Kamseu, C. Leonelli, Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash. J. of Sol-Gel Science and Technology, 78, 3, 492-506 2016.
 
13.
O. Burciaga-Diaz, J. I. Escalante- Garcia, R. X. Magallanes-Rivera, Compressive strength and microstructural evolution of metakaolin geolopymers exposed to high temperature. ALCOPAT Journal, 5, 1, 52-66 (2015).
 
14.
J. G. S Van Jaarsveld, J. S. J. Van Deventer, L. Lorenzen,. Miner Eng., 10, 659 (1997).
 
15.
A. Palomo, F. P. Glasser, Chemically-bonded cementitous materials based on metakaolin. Br. Ceram. Trans. J., 91, 107-112 (1992).
 
16.
J. Davitovis, M. Davitovits, N. Davitovits, US Patent, No 5, 342, 595,1994.
 
17.
P. Rovanik, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mat., 24, 1176-1183 (2010). DOI: 10.1016/j.conbuildmat. 2009.12.023.
 
18.
H. Rahier, B. B. Mele, M. Biesemans, J. Wastiels, X. Wu, Low temperature synthesized aluminosilicate glasses, J. Mater. Sci., 31, 71-79 (1996).
 
19.
J. Provis, J. Van Deventer, Geopolymers: structure, processing properties and industrial applications. Sawston, Cambridge UK: Woodhead Publishing Ltd., p. 441, 2009.
 
20.
O. Burciaga-Diaz, J. I. Escalante-Garcia, A. Gorokhovsky, Geopolymers based on a coarse low-purity kaolin mineral: mechanical strength as a function of the chemical composition and temperature, Cement and Concrete Composites, 34, 18-24 (2012 A).
 
21.
Y. S. Zang, W. Sun, Z. J. Li: Infrared spectroscopy study of structural nature of geopolymeric products, J. of Wuhan University of TechnologyMaterial Science, 2008. DOI 10.1007/s11595-007-45522-7.
 
22.
P. Duxson, G. C. Lukey, J. S. J. van Deventer, Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmiur, 22, 8750-8757 (2006).
 
23.
Z. Y. S. Wei, L. Zongjin, Preparation and microstructure of Na-PSDS Geopolymeric matrix. Ceramic-Silikaty, 5, 2, 88-97 (2009).
 
24.
J. Davidovits, U.S. Patent 45009985 (1985).
 
ISSN:1425-8129
Journals System - logo
Scroll to top