Sources of the gravel aggregate reaction with alkalis in concrete
 
More details
Hide details
1
Politechnika Świętokrzyska, Katedra Technologii i Organizacji Budownictwa
 
 
Publication date: 2012-05-01
 
 
Cement Wapno Beton 17(3) 149-154 (2012)
 
ACKNOWLEDGEMENTS
The paper to be presented at the XVIII “Kontra” Conference. The work has been cofunded from the European Union funds within the European Social Fund from project: “INWENCJA – Potencjał młodych naukowców oraz transfer wiedzy i innowacji wsparciem dla kluczowych dziedzin świ
REFERENCES (19)
1.
W. Kurdowski, Chemia cementu i betonu, SPC, Kraków 2010.
 
2.
Z. Owsiak: „Wpływ składu cementu na zmiany liniowe zaprawy w badaniu reakcji alkalia-krzemionka metodą przyspieszoną”, Cement Wapno Beton, 2, s.71-74 (2002).
 
3.
M. A. T. M. Broekmans, Structural properties of quarto and their potential role for ASR, Mater. Char., 53, 129-140 (2004).
 
4.
Z. Owsiak: “Wpływ reakcji alkaliów z kruszywem krzemionkowym na trwałość betonu”, Cement Wapno Beton, 2, s. 92-97, (2005).
 
5.
I. Sims, P. Nixon, RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates – Petrographic method, Mater. Struct., 26, 480-496 (2003).
 
6.
C. A. Rogers, Petrographic examination of aggregate and concrete in Ontario, Report EM-91, Ministry of Transportion, Ontario.
 
7.
T. Katayama, The so-called alkali-carbonate reaction (ACR) – Its mineralogical and geochemical detail, with special reference to ASR, Cem. Concr. Res., 40, 643-675 (2010).
 
8.
P. E. Grattan-Bellew, L. D. Mitchell, J. Margesin, D. Min, Is alkali-carbonate reaction just a variant of silica reaction ACR = ASR?, Cem. Concr. Res., 40, 556-562 (2010).
 
9.
J. M. Ponce, O. R. Batic, Different manifestation of the alkali-silica reaction in concrete according to the kinetics of the reactive aggregate, Cem. Concr. Res. 36, 1148-1156 (2006).
 
10.
J. Lindgård, Ö. Andiç-Çakır, I. Fernandes, T. F. Rønning, M. D. A. Thomas, Alkali-silica reaction (ASR): Literature review on parameters infl uencing laboratory performance testing, Cem. Concr. Res., (in press).
 
11.
Š. Lukschová, R. Přikryl, Z. Pertold, Petrographic identifi cation of alkalisilica reactive aggregates in concrete from 20th century bridges, Constr. Build. Mat., 23, 734-741 (2009).
 
12.
C. Hang, A. Wang, M. Tang, B. Wu, N. Zhang, Infl uence of aggregate size and aggregate size grading on ASR expansion, Cem. Concr. Res., 29, 1393-1396 (1999).
 
13.
S. Multon, M. Cyr, A. Sellier, P. Diederich, L. Petit, Effect of aggregate size and alkali content on ASR expansion, Cem Concr. Res., 40, 508-516 (2010).
 
14.
W. Kurdowski, A. Garbacik, B. Trybalska, Przyspieszona metoda oceny reaktywności kruszywa zawierającego wapień wg ASTM C 1260, Cement Wapno Beton, 6, 339-348 (2005).
 
15.
PN-92/B-06714-46 Kruszywo mineralne – Badania – Oznaczenie potencjalnej reaktywności alkalicznej metodą szybką.
 
16.
ASTM C 289-94 Standard Test Metod for Potential Alkali Silica Reactivity of Aggregates (Chemical Method).
 
17.
ASTM C 1260-07 Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method).
 
18.
I. Sims, P. Nixon, RILEM Recommended Test Method AAR-0: Detection of Alkali-Reactivity Potential in Concrete – Outline guide to the use of RILEM methods in assessments of aggregates for potential alkali-reactivity, Mater. Struct., 36, 472-479 (2003).
 
19.
P. Rivard, J.-P. Ollivier, G. Ballivy, Characterization of the ASR rim Application to the Potsdam sandstone, Cem. Concr. Res., 32, 1259-1267 (2002).
 
ISSN:1425-8129
Journals System - logo
Scroll to top