Bond stresses between concrete and prestressing in pre-tensioned elements – state of the art
,
 
 
 
More details
Hide details
1
Politechnika Krakowska
 
 
Publication date: 2018-09-01
 
 
Cement Wapno Beton 23(5) 358-368 (2018)
 
KEYWORDS
 
REFERENCES (36)
1.
Arab A A., Badie SS., Manzari M. A methodological approach for fi nite element modeling of pretensioned concrete members at release of prestressing. Engineering Structures, 33, pp. 1918-1929 (2011).
 
2.
BalázsGL. Transfer control of prestressing strands. PCI Journal, 37, pp. 60-71 (1992).
 
3.
Boloms vik R., Lundgren K. Modeling of bond between three-wire strands and concrete.Magazine of Concrete Research, 2006, 58 (3), pp. 123-133.
 
4.
Bentur A., Cohen MD. Effect of condensed silica fume on the microstructure of the interfacial zone in Portland cement mortars. Journal, American Ceramic Society 1987, 70 (10), s. 738-743.
 
5.
Cousins TE., Johnston DW., Zia P. Transfer length of epoxy-coated prestressing strand. ACI Materials Journal, 1990, 87 (3), pp. 193-203.
 
6.
Cousin s TE., Stallings JM., Simmons MB. Reduced strand spacing in pretensioned, prestressed members. ACI Structurals Journal, 1994, 91 (3), pp. 277-286.
 
7.
Derko wski W. Large panels buildings – the possibilities of modern precast industry, Cement, Wapno, Beton 5/2017, pp. 414-425.
 
8.
Derkowski W., Dyba M. Behaviour of End Zone of Pre-tensioned Concrete Elements, Procedia Engineering 193, 19-26.
 
9.
Derkowski W., Słyś B., Szmit M. Effect of Strands’ Anchorage System in Railway Sleepers on Behaviour of its Rail Seat Zone, Architecture, Civil Engineering, Environment ACEE, 1/2015, pp.61-67.
 
10.
Derkowski W., Surma M. Infl uence of concrete topping on the work of prestressed hollow core slabs on fl exible supports, 4th International fi b Congress 2014 - Proceedings, pp. 339-341.
 
11.
Dyba M. Wpływ parametrów technologicznych na przyczepność betonu wysokowartościowego do stalowych splotów sprężających. Pracadoktorska, Politechnika Krakowska, 2014.
 
12.
Dybeł P. Wpływ składu i właściwości betonów wysokowartościowych na przyczepność do stalowych prętów zbrojeniowych. Praca doktorska, Politechnika Krakowska, 2012.
 
13.
Dybeł P., Furtak K. Wpływ zawartości pyłu krzemionkowego na sztywność przyczepności betonu wysokowartościowego do prętów zbrojeniowych. Cement, Wapno, Beton 79, pp. 106-113 (2014).
 
14.
EN 1992-1-1:2008 Eurokod 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, 2008.
 
15.
fi b Bulletin 10. Bond of reinforcement in concrete. FIB, 2000.
 
16.
fi b Bulletin 65. Model Code for Concrete Structures 2010, FIB, 2012.
 
17.
HeggerJ., Bertram G. Verbundverhalten von vorgespannten Litzen in UHPC – teil 1: Versuche zur verbundfestigkeit und übertragungslänge. Beton und Stahlbeton, 105, pp. 379-389 (2010).
 
18.
Hosse ini SJA. et al. Zagadnienie przyczepności w betonie zbrojonym, przegląd stanu wiedzy. Cement, Wapno, Beton, 79, pp. 93-105 (2014).
 
19.
Hosseini SJA. et al. Zagadnienie przyczepności w betonie zbrojonym, przegląd stanu wiedzy, część druga. Cement, Wapno, Beton 79, pp. 384- 395 (2014).
 
20.
Hwang S., Lee Y., Lee C. Effect of silica fume on the splice strength of deformed bars of high-performance concrete. ACI Structural Journal, 91, pp. 294-302 (1994).
 
21.
Janney J. R. Nature of bond in pre-tensioned prestressed concrete, ACI Journal, , 50, pp. 717-736 (1954).
 
22.
Kaar P H., LaFraugh RW., Mass MA., Infl uence of concrete strength on strand transfer length. PCI Journal, , 8 (5), pp. 47-67 (1963).
 
23.
KimuraH., Jirsa J., Effects of bar deformation and concrete strength on bond of reinforcing steel to concrete. Proceedings, International Conference on Bond in Concrete, Riga, 1992.
 
24.
Kose M M., Burkett WR., Formulation of new development length equation for 0,6 in. prestressing strand. PCI Journal,September-October, 50 (5), pp. 96-105 (2005).
 
25.
Mitche ll D., Cook W. D., Khan AA., Tham T. Infl uence of high strength concrete on transfer and development length of pretensioned strand. PCI Journal, 1993, 38 (3), pp. 52-66.
 
26.
Mote J ., Bond mechanics of steel prestressing strand. Norman Oklahoma: University of Oklahoma, 2001.
 
27.
Oh BH. , Kim ES. Realistic evaluation of transfer lengths in pretensioned, prestressed concrete memebers. ACI Structural Journal, 97 (6), pp. 821-830 (2000).
 
28.
Pawluk , J., Derkowski W. Factors determining the properties and durability of pre-tensioned railway sleepers, Cement, Wapno, Beton, 81 , pp. 347-360 (2016).
 
29.
Peterman RJ. The effects of as-cast depth and concrete fl uidity on strand bond.PCI Journal, 52 , pp. 72-101 (2007).
 
30.
Russel l BW. Impact of high strength concrete on the design and construction of pretensioned girder bridges. J. of Structural Engineering, 39 (4), pp. 76-89 (1994).
 
31.
Russel l BW., Burns NH. Measurement of transfer lengths on pretensioned concrete elements. J. of Structural Engineering, 123 (5), pp. 541-549 (1997).
 
32.
Serug a A. Zależność naprężenie przyczepności-poślizg betonu do zbrojenia w elementach strunobetonowych z betonów wysokowartościowych. Materiały konferencyjne KS 2018, 2018, s 25-51.
 
33.
Seruga A., Jaromska E. Transmission length of tensioning force in prestressed concrete panel elements, Technical Transactions 4-B/2012, pp. 75-102.
 
34.
Shahawy MA, Issa M., Batchelor BD. Strand transfer lengths in full scale AASHTO prestressed concrete girders. PCI Journal, 37 (3), pp. 84-96 (1992).
 
35.
Stroev en P., De Wind G., Structural and mechanical aspects of debonding of a steel bar from cementitious matrix. Bond in Concrete. Applied Science Publishers, pp. 40-50.
 
36.
Zia P. , Mostafa T., Development length of prestressing strands, PCI J. September-October 1977, 22 (5), pp. 54-63.
 
ISSN:1425-8129
Journals System - logo
Scroll to top