Prediction of hardening temperature and thermal stresses in a sluice foundation
 
More details
Hide details
1
Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
 
2
Univesity of Minho, Campus de Azurem, Guimarães, Portugal
 
3
Graz University of Technology, Institute of Structural Concrete, Graz, Austria
 
 
Publication date: 2019-09-21
 
 
Cement Wapno Beton 24(4) 286-295 (2019)
 
KEYWORDS
ABSTRACT
The study presents the numerical and analytical simulation of the hardening temperature, thermal strains and stresses in the foundation of the sluice Sülfeld-Süd in Germany, which construction process was completed in November 2008. The present study relates to a particular construction stage of this foundation with real dimensions of 41.5 x 26.5m and a thickness of 2 m.The numerical analysis was performed in the software DIANA FEA. The obtained results are compared with actual measurements of temperature, strains and stresses in the sluice foundation.
ACKNOWLEDGEMENTS
Funding provided by: Silesian University of Technology (BKM547/RB6/2018 and BK-237/RB6/2018); the Portuguese Foundation for Science and Technology (FCT) to the Research Project IntegraCrete PTDC/ECM-EST/1056/2014(POCI-01-0145-FEDER-016841), as well by the Research Unit ISISE (POCI-01- 0145-FEDER-007633).
REFERENCES (22)
1.
ACI Committee, ACI 207.2R-07 - Report on thermal and volume change effects on cracking of mass concrete, American Concrete Institute, Farmington Hills (2007).
 
2.
P. B. Bamforth, Early-age thermal crack control in concrete. CIRIA C660, Classic House London (2007).
 
3.
JCI, Guidelines for Control of Cracking of Mass Concrete 2016’, Japan Concrete Institute, Tokyo (2017).
 
4.
K. Flaga, B. Klemczak, Konstrukcyjne i technologiczne aspekty naprężeń termiczno-skurczowych w masywnych i średniomasywnych konstrukcjach betonowych, Kraków: Politechnika Krakowska (2016).
 
5.
B. Kuriakose, B. N. Rao, G. R. Dodagoudar, Early-age Temperature Distribution in a Massive Concrete Foundation, Procedia Technology, 25, 107–114 (2016).
 
6.
B. Klemczak, A. Żmij, M. Azenha, Numerical Study on Restraints Effects in Massive Foundation Slabs, Procedia Engineering, 193, 226–233 (2017).
 
7.
M. Azenha, C. Sousa, R. Faria, A. Neves, Thermo–hygro–mechanical modelling of self-induced stresses during the service life of RC structures, Engineering Structures, 33(12), 3442–3453 (2011).
 
8.
N. V. Tue, D. Schlicke, J. Bödefeld, Beanspruchungen in dickenBodenplatteninfolge des Abfl ießens der Hydratationswärme, Bautechnik, 84, Heft 10, 702–710 (2007).
 
9.
D. Schlicke, F. Kanavaris, R. Lameiras and M. Azenha, On-site Monitoring of Mass Concrete, In: Thermal Cracking of Massive Concrete Structures, RILEM TC 254 State of Art Report, Springer Int. Publishing, Cham, 2019.
 
10.
B. Eierle, K. Schikora, Zwang und RissbildunginfolgeHydratationswärme, DAfStb, Heft 512 (2000).
 
11.
F. Rostásy, M. Krauß, FrüheRisse in massigenBetonbauteilen – Ingenieurmodellefür die Planung von Gegenmaßnahmen, DAfStb, Heft 520 (2001).
 
12.
PN-EN 1992-1-1 Eurokod 2 Projektowanie konstrukcji z betonu Część 1-1: Reguły ogólne i reguły dla budynków, Polski Komitet Normalizacyjny (2008).
 
13.
R. Weil, The Nature and Properties of Soils. 15th edition: Appendix C: Properties of soils, 1396–1400 (2016).
 
14.
Z. P. Bazant, Material Models for Structural Creep Analysis, in Mathematical Modeling of Creep and Shrinkage of Concrete, New York: John Wiley & Sons, 99–215 (1988).
 
15.
B. Klemczak, M. Batog, Z. Giergiczny, A. Żmij, Complex Effect of Concrete Composition on the Thermo-Mechanical Behaviour of Mass Concrete, Materials, 11, 11, 1–18 (2018).
 
16.
J. Carette, For a Better Understanding of Eco-Concrete Containing Blast-Furnace Slag and Limestone Filler: Mix Design Considerations, Early Age Characterisation, and Durability Issues. PhD Thesis, Université Libre de Bruxelles (2015).
 
17.
S. A. Baggs, Remote prediction of ground temperature in Australian soils and mapping its distribution, Solar Energy, 30, 4, 351–366 (1983).
 
18.
C. O. Popiel, J. Wojtkowiak, B. Biernacka, Measurements of temperature distribution in ground, Experimental Thermal and Fluid Science, 25, 5, 301–309 (2001).
 
19.
D. Schlicke, UntersuchungzuTemperatur- und Steifi gkeitsentwicklungimjungenBeton am Beispiel der SchleuseSülfeld, Master thesis University of Leipzig, 2006.
 
20.
D. Schlicke and N.V. Tue, Minimum reinforcement for crack width control in restrained concrete members, Structural Concrete, 16, pp. 221-232 (2014).
 
21.
JSCE Committee, Guidelines for Concrete. No. 15: Standard Specifi - cations for Concrete Structures, Design, Tokyo 2010.
 
22.
CEB Comittee’ Euro - International du Beton, CEB - FIB Model Code 1990. Bulletin D’Information. Final draft (1993).
 
ISSN:1425-8129
Journals System - logo
Scroll to top