Protection of concrete against corrosion caused by the reaction of sodium and potassium hydroxides with silica
More details
Hide details
1
Łukasiewicz Research Network - Institute of Ceramics and Building Materials in Cracow
2
Technische Universität Chemnitz, Fraunhofer IWU
Submission date: 2024-10-15
Final revision date: 2025-02-25
Acceptance date: 2025-04-15
Publication date: 2025-04-16
Cement Wapno Beton 29(5) 360-374 (2024)
KEYWORDS
ABSTRACT
Prevention of the reaction of sodium and potassium hydroxides with silica [alkali-silica reaction – ASR] in concrete can be shaped by: using non-reactive aggregate, ensuring a low content of sodium and potassium oxides in the concrete mix, or using mineral additives. This article presents the results of research on preventing the ASR reaction in concrete by using mineral additives: pozzolanic and with latent hydraulic properties. The scope of the research included a large group of domestic aggregates with varying degrees of alkaline reactivity. The results of the tests of alkaline expansion of mortars, according to the accelerated method ASTM C 1260-14, allowed us to determine the minimum addition of siliceous fly ash and granulated blast furnace slag, which effectively reduces the expansion of mortars caused by the ASR reaction to the required level below 0.1%. For aggregate with a degree of reactivity R1, with an expansion of 0.1-0.2 %, the addition of 20 % fly ash introduced with Portland ash cement CEM II/A-V effectively eliminates the ASR reaction. For aggregate R1 with an expansion of 0.2-0.3 %, CEM II / B-V Portland ash cement should be used, which contains at least 25 % fly ash. In the case of granulated blast furnace slag, for aggregate R1 with an expansion of 0.1-0.2 %, the minimum amount of additive that effectively eliminates the expansion of mortars caused by the ASR reaction should be 30 %, and for aggregate R1 with an expansion of 0.2-0.3 %, the minimum amount is 50 %. These quantities of granulated blast furnace slag can be fed with CEM II/B-S Portland slag cement and CEM III/A blast furnace cement, respectively.
REFERENCES (30)
1.
T. Katayama, The so-called alkali-carbonate reaction (ACR) - Its mineralogical and geochemical details, with special reference to ASR. Cem. Concr. Res. 40(4), 643-675 (2010).
https://doi.org/10.1016/j.cemc....
2.
F. Ulm, O. Coussy, L. Kefei, C. Larive, Thermo-Chemo-Mechanics of ASR Expansion in Concrete Structures. J. Eng. Mech. 126(3), 233-242 (2000).
https://doi.org/10.1061/(ASCE)...).
3.
M. Kawamura, K. Iwahori, ASR gel composition and expansive pressure in mortars under restraint, Cem. Concr. Comp. 26(1), 47–56 (2004).
4.
S. Diamond, A review of alkali–silica reaction and expansion mechanisms. Reactive aggregates. Cem. Concr. Res. 6(4), 549–60 (1976).
https://doi.org/10.1016/0008-8....
5.
M.D.A. Thomas, The effect of supplementary cementing materials on alkali–silica reaction: a review. Cem. Concr. Res. 41(12), 209–16, 2011.
https://doi.org/10.1016/j.cemc....
6.
J. Lindgard, O. Andic-Cakır, I. Fernandes, TF Ronning, MDA Thomas, Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 42(2), 223–43, (2012).
https://doi.org/10.1016/j.cemc....
7.
ASTM C 295-12: Standard Guide for Petrographic Examination of Aggregates for Concrete.
8.
ASTM C 289-07: Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method).
9.
ASTM C 1260 -14 Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar - Bar Method).
10.
ASTM C 1293-08b (2015) Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction.
11.
PN-EN 206+A1:2016-12. Beton -- Wymagania, właściwości, produkcja i zgodność.
12.
PN-EN 12620+A1:2010. Kruszywa do betonu.
13.
RILIEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures, State-of-the-Art Report of the RILEM Technical Committee 219-ACS, vol. 17, Springer Netherlands, 2016.
14.
CEN/TR 16349 Framework for a specification on the avoidance of a damaging Alkali-Silica Reaction (ASR) in concrete.
15.
B. Fournier, R. Chevrier, A. Bilodeau, PC Nkinamubanzi, N. Bouzoubaa, Comperative field and laboratory investigations on the use of supplementary cementing materials (SCMS) to control alkali-silica reaction (ASR) in concreto. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo-Brasil, 2016.
16.
K. Torii, T. Kubo, C. Sannoh, M. Kanitani.,The alkali-silica reactivity of andesitic river aggregates and ASR mitigation effect by using fine fly ash. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo-Brasil, 2016.
17.
J. Custódio, F. Río Iglesias, Ó. Herrero Domínguez, AS Silva, AB Ribeiro, D. Costa, Fly ash to prevent ASR with slowly-reactive aggregates in Portugal. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo-Brasil, 2016.
18.
M. Shehata, S. Jagdat, M. Lachemi, Ch. Rogers, Alkali-carbonate reaction: Mechanism and effects of cement alkali and supplementary cementing materials. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo-Brasil, 2016.
19.
S. Iguchi, Y. Matsuda, D. Tsukishima, An examination of AAR mitigation measures using fly ash. 15th International Conference on Alkali-Aggregate Reaction, Sao Paulo-Brasil, 2016.
20.
Projekt badawczy realizowany w ramach Wspólnego Przedsięwzięcia RID „Rozwój Innowacji Drogowych” w obszarze zagadnienia. pt.: „Reaktywność alkaliczna krajowych kruszyw”. Projekt realizowany w ramach konsorcjum: Instytut Ceramiki i Materiałów Budowlanych. Oddział Szkła i Materiałów Budowlanych w Krakowie. Instytut Podstawowych Problemów Techniki PAN. finansowany przez: Narodowe Centrum Badań i Rozwoju oraz Generalną Dyrekcję Dróg Krajowych i Autostrad w latach 2016–2018.
21.
Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich, nowelizacja v2, marzec 2022 cz. I; Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich, nowelizacja v2, marzec 2022 cz. II- załączniki (procedury badawcze).
22.
AASHTO R 80-17 “Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction”, American Association of State and Highway Transportation Officials, Washington, DC, 2011.
23.
PN-EN 450-1:2012 Popiół lotny do betonu - Część 1: Definicje, specyfikacje i kryteria zgodności.
24.
PN-EN 197-1:2012 PN-EN 197-1:2012 Cement. Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.
25.
DAfStB - Richtlinie, orbeugen de Maßnahmen gegen schädigen de Alkali reaction im Beton (Alkali-Richtlinie), BeuthVerlag, Berlin, 43 str., Ausgabe October 2013.
26.
ÖNORM B 3100:2006-07, Beurteilung der Alkali- Kieselsäure - Reaktivität im Beton, Österreichisches Normungs Institut, Wien 2008.
27.
STN 72 1179, Stanovenie a hodnotenie alkalickej rozpínavos tikameniva (alkalicko-kremičitáreakcia), Úrad pre normalizáciu, metrológiu a skúšobníctvo SR, 2014.
28.
Projekt wytycznych technicznych GDDKiA- Zapobiegania reakcji alkalicznej kruszywa w betonie nawierzchni drogowych i infrastruktury drogowej w tym dróg szybkiego ruchu i autostrad, 2018.
29.
ASTM C114-15 Standard Test Methods for Chemical Analysis of Hydraulic Cement.
30.
M. Ostrowski, Role of fly ash and granulated blast furnace slag in affect on properties of concrete mix and hardened concrete with low Portland clinker content. PhD. Thesis, Silesian University of Technology, 2017 (in Polish).