Pore size distribution effects on the thermal conductivity of light weight autoclaved aerated concrete
More details
Hide details
1
Xella Technology and Research, Department of Product-and Process Research, Gregor-von Brück-Ring 9 A, D-14822 Brück & Hohes Steinfeld 1, D-14797 Kloster Lehnin, Germany
2
Technische Universität Bergakademie Freiberg, Institute of Ceramics, Glass and Construction Materials, Freiberg, Germany
Publication date: 2011-12-01
Cement Wapno Beton (Special 2011 16) 49-52 (2011)
ABSTRACT
Aim of the present study was to correlate thermal conductivities of highly porous autoclaved aerated concrete (apparent density < 100 kg/m3 ) with appendant micro-and nano-structural properties. AAC specimens with approximate apparent densities, but different pore size distributions were fabricated through utilizing specially selected, surface active additives when preparing the slurry of raw materials, aluminum and water. The main focus of this study is on the quantitative analysis of size and morphology of both pores and solid skeleton by 3D X-ray tomography (CT) and scanning electron microscopy (SEM). Moreover, specifi c surface areas and pore size distributions were determined by the methods of gas adsorption and mercury porosimetry. Apparent thermal conductivities depend on the number of pores, pore size distributions and thicknesses of the separating walls of the solid skeleton. The present study provides further inside in the mechanisms of heat transfer in light weight autoclaved aerated concrete.
REFERENCES (10)
1.
Narayanan N., Ramamurthy K., 2000. Structure and properties of aerated concrete: a review. Cem. Concr. Comp. 22, 321-329.
2.
Kreft O., Schoch T., 2010. Alitinform. The Infl uence Of Moisture On The Thermal Conductivity Of AAC. 1 (13), 60-65.
3.
Tran L., Strahlungseffekte bei instationären Heizdraht-messungen an porösen Wärmedämmstoffen. Dissertation. TU Bergakademie Freiberg, Germany, 2002.
4.
Bave G., Aerated light weight concrete-current technology. In: Proceedings of the Second International Symposium on Lightweight Concretes. London, 1980.
5.
YTONG Multipor Mineraldämmplatte, European Technical Approval ETA 05/0093 (valid through May 8, 2015).
6.
Zürn S.G., Einfl uss der Sandminerale auf die Bildung von Calciumsilikathydraten (C-S-H-Phasen), das Gefüge und die mechanischen Eigenschaften von Porenbetonprodukten. Dissertation. LudwigMaximilians-Universität München, Logos Verlag Berlin, 1997.
7.
Prim P., Witmann F.H., Structure and water absorption of aerated concrete. In: Wittmann F. H., editor. Proceedings Autoclaved Aerated Concrete, moisture and Properties. Elsevier, Amsterdam. 43-53, 1983.
8.
Caty O., 2008. Modelling the properties of closed-cell cellular materials from tomography images using fi nite shell elements. Acta Materialia. 57, 5524-5543.
9.
Alexanderson J., 1979. Relations between structure and mechanical properties of autoclaved aerated concrete. Cem. Concr. Res. 9 (4), 507-514.
10.
Myers D., Surfaces, Interfaces And Colloids. Principles and Applications (2ed., Wiley-VCH, New York, 1999.