On the use of self-compacting concrete based on desert sand and granite powder
 
More details
Hide details
1
Département de Génie Civil, Université Mouloud MAMMERI de Tizi Ouzou BP 17RP, Algeria
 
2
Département d’architecture, Faculté des Sciences, Université d’Alger 1, Benyoucef Benkhedda, Algeria
 
3
Laboratoire LEC2M, Université Mouloud MAMMERI de Tizi Ouzou BP 17RP, Algeria
 
 
Submission date: 2023-08-28
 
 
Final revision date: 2024-11-12
 
 
Acceptance date: 2024-11-16
 
 
Publication date: 2024-12-07
 
 
Corresponding author
Mohand Ould Ouali   

Mouloud Mammeri University, 15000, Tizi Ouzou, Algeria
 
 
Cement Wapno Beton 29(3) 171-187 (2024)
 
KEYWORDS
TOPICS
other
 
ABSTRACT
This article is dedicated to the valorization of local materials as substitutes in self-compacting concrete. We were interested in studying the effect of adding granite powder as a substitute for cement in a self-compacting concrete made of 100% desert sand, and also as a substitute for river and/or quarry sands. First, the dosage of the superplasticizer on the cementitious paste is optimized and then confirmed this percentage in the case of concrete. Subsequently, several concrete formulations were produced. Then, the rheological, mechanical, and durability behavior of these self-compacting concretes with different percentages of granite powder and superplasticizer were studied by carrying out characterization tests in the fresh state [slump-flow, L box, sieve stability test, density] and the hardened state [Compressive strength, verification of static segregation, etc.]. From the results obtained, the concrete composition with 1.7% superplasticizer and 10% granite was found optimal, following the recommendations of the AFGC 2008 standard. The durability tests results of this concrete and the analysis of its behavior at high temperatures have confirmed that the formulation adopted can be used in severe working conditions.
REFERENCES (56)
1.
Z. P. Bažant, A. A. Dönmez and H. T. Nguyen, Précis of gap test results requiring reappraisal of line crack and phase-field models of fracture mechanics. Eng. Struct. 250, 113285 (2022). https://doi.org/10.1016/j.engs....
 
2.
S. Gökçe Gök, I. Kilic , Ö. Sengül, Properties of alkali-activated roller compacted concretes produced from waste aggregates. Cem. Wapno Beton 26(4) 352–363 (2021). https://doi.org/10.32047/cwb.2....
 
3.
M. Ould Ouali, P. Poorsolhjouy, L. Placidi and A. Misra, Evaluation of the effects of stress concentrations on plates using granular micromechanics. Constr. Build. Mater. 290, 123227 (2021). https://doi.org/10.1016/j.conb....
 
4.
D. Lau, H. J. Pam, Experimental study of hybrid FRP reinforced concrete beams. Eng. Struct. 32, 3857–3865 (2010). https://doi.org/10.1016/j.engs....
 
5.
L. Madouni, M. Ould Ouali, N. E. Hannachi, Numerical assessment of the load transfer in steel coupling beam-reinforced concrete shear wall connection. Asian J. Civil Eng. 20(1), pp 35–47, (2019). https://doi.org/10.1007/s42107....
 
6.
Y. Agrawal, T. Gupta, R. Sharma, N.L. Panwar, S. A. Siddique, Comprehensive Review on the Performance of Structural Lightweight Aggregate Concrete for Sustainable Construction. Constr. Mater. 1, 39–62 (2021). https://doi.org/10.3390/constr....
 
7.
J. Smoleń, K. Tomaszewska, G. Junak, M. Kozioł, Short glass fiber reinforced polymer concrete with addition of waste cathode-ray tube (CRT) glass. Cem. Wapno Beton 27(2) 102–114 (2022). https://doi.org/10.32047/cwb.2....
 
8.
N. Talbi, A. Nekmouche, M. Ould Ouali, N. E. Hannachi and M. N. Farsi, Modeling the contribution of tire-reclaimed and industrial steels fibers on the strength and ductility of RC-frames structures. World J. Eng. 20(5), 888-904, (2023). https://doi.org/10.1108/WJE-12....
 
9.
Z. Li, T. Guo, Y. Chen, Y. Wang, Y. Chen, Q. He, X. Yang, J. Wang, Study on Performance of Retarded Composite Semi-Rigid Base Mixed with Rubber Powder. Materials 15, 4683 (2022). https://doi.org/10.3390/ma1513....
 
10.
H. Okamura, M. Ouchi. Self-compacting Concrete. J. Adv. Concr. Techn. 1(1), 5-15 (2003). http://dx.doi.org/10.3151/jact....
 
11.
S. Mahesh, Self-Compacting Concrete and its Properties. J. Eng. Res. Appl. 4(8), 72-80 (2014).
 
12.
J. Shen, Mix-design method of self-compacting concretes for pre-cast industry. Can. J. Civ. Eng. 36, 1459–1469 (2008). https://doi.org/10.1139/L09-08....
 
13.
M. Reddy, Effect of W/C Ratio on Workability and Mechanical Properties of High Strength Self Compacting Concrete. IOSR-JMCE 3(1), 06-13 (2013). http://dx.doi.org/10.9790/1684....
 
14.
N. Bouhamou, N. Belas, H. A. Mesbah, R. Jauberthie, A. Ouali, A. Mebrouki, Influence des rapports eau/ciment et fines/ciment sur le comportement à l’état durci du béton auto plaçant à base de matériaux locaux algériens. Rev. Can. Génie Civ. 36, 1195–1206 (2009). http://dx.doi.org/10.1139/L09-....
 
15.
Salah E. Belaidi, S. Kenai, El-Hadj Kadri, H. Soualhi, B. Benabed, Effects of experimental ternary cements on fresh and hardened properties of self-compacting concretes. J. Adh. Sci. Techn. 30(3), pp247-261 (2015). http://dx.doi.org/10.1080/0169....
 
16.
R. Dubey, P. Kumar, Effect of superplasticizer dosages on compressive strength of self-compacting concrete. IJCSE 3(2), 360-366 (2012).
 
17.
S. M. Dume, Effect of superplasticizer on fresh and hardened properties of self-compacting concrete containing fly ash. AJER 3(3), 205-211 (2014).
 
18.
K.S. Johnsirani, Studies on Effect of Mineral Admixtures on Durability of Self-Compacting Concrete. Eur. J. Adv. Eng. Techn. 2(7), 87-94 (2015).
 
19.
R. Cheraghalizadeh and T. Akçaoǧlu, Properties of self-compacting concrete containing olive waste ash. Cem. Wapno Beton, 25(3), 178–187 (2020). https://doi.org/10.32047/CWB.2....
 
20.
S. Alsanusi, Influence of Silica Fume on the Properties of Self Compacting Concrete. IJCESCAE 7, 348-352 (2013).
 
21.
U. N. Shah, C. D. Modheda, Study on fresh of self-compacting concrete with process fly ash. IJRET 2(5), 271-274 (2014).
 
22.
D. Kumar Ashish, Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth. J. Build. Eng. 15, 236-242 (2018). https://doi.org/10.1016/j.jobe....
 
23.
P. Ricardo, L. Roberto Prudêncio Jr, A. E Lima, F. Pelisser, P. J. P. Gleize. Use of porcelain polishing residue as a supplementary cementitious material in self-compacting concrete. Constr. Build. Mater. 193, 623–630 (2018). https://doi.org/10.1016/j.conb....
 
24.
S. Kim, S. Choi, E. Yang, Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate. Constr. Build. Mater. 184, 269–277 (2018). https://doi.org/10.1016/j.conb....
 
25.
K. Haddad, O. Haddad, S. Aggoun, S. Kaci, Correlation between the porosity and ultrasonic pulse velocity 1 of recycled aggregate concrete at different saturation levels. Can. Génie Civil, 44(11), 911-917 (2017).
 
26.
M. Gravost, JM Sionneau, Interactions entre les carrières et les eaux souterraines et superficielles. Bilan des connaissances techniques. Bureau de Recherches Géologiques et Minières. 1988.
 
27.
B T. Ashwini Manjunath, Partial Replacement of Sea and Desert Sand in Place of River Sand for Mortar in Construction. GRD J. Eng. 2(7), 81-85 (2017). https://doi.org/10.13140/RG.2.....
 
28.
H. Liu, Frost Resistance of Desert Sand Concrete. Adv. Civil Eng. 2021, 6620058 (2021). https://doi.org/10.1155/2021/3....
 
29.
J. Kaufmann, Evaluation of the combination of desert sand and calcium sulfo-aluminate cement for the production of concrete. Constr. Build. Mater. 243, 118281 (2020). https://doi.org/10.1016/j.conb....
 
30.
H. Cai, Predicting the Compressive Strength of Desert Sand Concrete Using ANN: PSO and Its Application in Tunnel. Adv. Civil Eng. 2020, 8875922, (2020). https://doi.org/10.1155/2020/8....
 
31.
Jialing Che, Mechanical Properties of Desert Sand-Based Fiber; Reinforced Concrete (DS-FRC). Appl. Sci. 9, 1857 (2019). https://doi.org/10.3390/app909....
 
32.
N. Khelil, M. Ould Ouali, L. Meziane, On the use of fine dune sand in Reactive Powder Concrete: Effect on resistance, water absorption and UPV properties. Constr. Build. Mater. 388, 131684 (2023). https://doi.org/10.1016/j.conb....
 
33.
G Santha Kumar, Aman Kumar Mishra, Influence of granite fine powder on the performance of cellular lightweight concrete. J. Build. Eng. 40, 102707 (2021). https://doi.org/10.1016/j.jobe....
 
34.
Z.Z. Woźniak, A. Chajec, L. Sadowski, Effect of the Partial Replacement of Cement with Waste Granite Powder on the Properties of Fresh and Hardened Mortars for Masonry Applications. Materials 15, 9066 (2022). https://doi.org/10.3390/ma1524....
 
35.
E. Asadi Shamsabadi, M. Ghalehnovi, J. De Brito, A. Khodabakhshian, Performance of Concrete with Waste Granite Powder: The Effect of Superplasticizers. Appl. Sci. 8(10), 1808 (2018). https://doi.org/10.3390/app810....
 
36.
T. Felix Kala, Effect of Granite Powder on Strength Properties of Concrete. Int. J. Eng. Sci. 2(12), 36-50 (2013).
 
37.
S. Ghannam, Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sust. Mater. Techn. 9, 1–9, (2016). https://doi.org/10.1016/j.susm....
 
38.
G. Prokopski, V. Marchuk, A. Huts. The effect of using granite dust as a component of concrete mixture. Case Stud. Constr. Mater. 13, e00349 (2020). https://doi.org/10.1016/j.cscm....
 
39.
NF EN 206-2014 : Norme Spécifications, performances, production et conformité,2014.
 
40.
NF EN 1008 : Norme Eau de gâchage pour bétons, 2003.
 
41.
NFEN 1097 : Norme Essais pour déterminer les caractéristiques mécaniques et physiques des granulats, 2011.
 
42.
NF EN 933 : Norme Essais pour déterminer les caractéristiques géométriques des granulats.
 
43.
BS EN 1744-1:2009+A1:2012: Tests for chemical properties of aggregates - Chemical analysis.
 
44.
NF EN 12350-8 : Norme Essai pour béton frais - Partie 8 : béton autoplaçant - Essai d'étalement au cône d'Abrams, 2010.
 
45.
NF EN 12350-10 : Norme Essai pour béton frais - Partie 10 : béton autoplaçant - Essai à la boîte en L, 2010.
 
46.
NF EN 12350-11 : Norme Essai pour béton frais - Partie 11 : béton autoplaçant - Essai de stabilité au tamis, 2011.
 
47.
AFGC 2008 : Cussigh F., Recommandations pour l’emploi des Bétons Auto Plaçants. nAFGC/PN, B@P, 2008.
 
48.
NF EN 12390-1 : Norme Essais pour béton durci - Partie 1 : forme, dimensions et autres exigences aux éprouvettes et aux moules, 2012.
 
49.
NF EN 12390-2 : Norme Essais pour béton durci - Partie 2 : confection et conservation des éprouvettes pour essais de résistance, 2019.
 
50.
NF EN 12390-3 : Norme Essais pour béton durci - Partie 3 : résistance à la compression des éprouvettes, 2019.
 
51.
NF EN 1250-4: Norme Essais pour béton dans les structures - Partie 4 : détermination de la vitesse de propagation du son, 2005.
 
52.
NF EN 12390-8: Norme Essais pour béton durci - Partie 8 : profondeur de pénétration d'eau sous pression, 2019.
 
53.
M. Moul, Resistance aux acides et à la pénétration des ions chlorures des mortiers avec pouzzolane et fine calcaire. Comm. Sci. Techn. 8, 2010.
 
54.
B. Alam, Sulphate Attack in High-Performance Concrete-A Review. 1(1), 15-18 (2012).
 
55.
A. Subhan, Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume. Adv. Concr. Constr. 7(1), 31-37 (2019). https://doi.org/10.12989/acc.2....
 
56.
C. Larissa, Effect of high temperatures on self-compacting concrete with high levels of sugarcane bagasse ash and metakaolin. Constr. Build. Mater. 248, 118715 (2020). https://doi.org/10.1016/j.conb....
 
ISSN:1425-8129
Journals System - logo
Scroll to top