High-temperature resistance of concretes produced of two different cements
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
 
 
Publication date: 2016-09-01
 
 
Cement Wapno Beton 21(5) 295-309 (2016)
 
KEYWORDS
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under project No P104/12/0791, and Ministry of Education, Youth and Sports of the Czech Republic, under project No SGS16/199/OHK1/3T/11.
 
REFERENCES (26)
1.
D. N. Crook, M. J. Murray, Regain of strength after fi ring of concrete. Mag. Conc. Res., 22, 149-154 (1970).
 
2.
A. Petzold, M. Röhrs, Concrete for High Temperatures. London: Maclaren and Sons Ltd., 1970.
 
3.
P. K. Metha, P. J. M. Monreiro, Concrete: Structure, Properties, and Materials. Englewood Cliffs, New Jersey: Prentice Hall College Div., 1986.
 
4.
S. Mindess, J. F. Young, D. Darwin, Concrete. Engelwood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.
 
5.
C. M. George, Industrial Aluminous Cements, Chapter 9, ed. P. Barues, Structure and Preformance of Cements, Applied Science Publishers, London, New York.
 
6.
W. Khaliq, H. A. Khan, High temperature material properties of calcium aluminate cement concrete. Constr. Build. Mat. 94, 475-487 (2015).
 
7.
A. Smith, T. Chotard, N. Gimet-Breart, D. Fargeot, Correlation between hydration mechanism and ultrasonic measurements in an aluminous cement: effect of setting time and temperature on the early hydration. J. of the European Ceramic Society 22, 1947-1958 (2002).
 
8.
N. Ukrainczyk, T. Matusinović, Thermal properties of hydrating calcium aluminate cement pastes. Cem. Concr. Res. 40, 128-136 (2010).
 
9.
V. Antonovič, J. Keriene, R. Boris, M. Aleknevičius, The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure. Procedia Engineering 57, 99-106 (2013).
 
10.
V. Fiore, G. Di Bella, A. Valenza, Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design 32, 2091-2099 (2011).
 
11.
V. Dhand, G. Mittal, K. Y. Rhee, S.-J. Park, D. Hui, A short review on basalt fi ber reinforced polymer composites. Composites Part B: Engineering 73, 166-180 (2015).
 
12.
C. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fi bre reinforced concrete. Materials and Design 58, 187-193 (2014).
 
13.
N. Kabay, Abrasion resistance and fracture energy of concretes with basalt fi ber. Constr. Build. Mat. 50, 95-101 (2014).
 
14.
L. Domagała, I. Hager, Infl uence of high temperature on compressive strength of structural lightweight concrete. Cement Wapno Beton 79, 138-143 (2012).
 
15.
I. Hager, T. Tracz, K. Krzemień, Usefulness of selected destructive and non-destructive methods in the assessment of concrete after fi re. Cement Wapno Beton 81, 145-151 (2014).
 
16.
V. K. R. Kodur, L. Phan, Critical factors governing the fi re performance of high strength concrete systems. Fire Safety Journal 42, 482-488 (2007).
 
17.
D. R. Flynn, Response of High Performance Concrete to Fire Conditions: Review of Thermal Property Data and Measurement Techniques. Milwood, USA: National Institute of Standards and Technology, 1999.
 
18.
ČSN EN 206 - Concrete – Specifi cation, performance, production and conformity. Prague: Czech Standardization Institute, 2014.
 
19.
S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. J. of Thermal Envelope and Building Science 27, 307-325 (2004).
 
20.
ČSN EN 1015: Methods of test for mortar for masonry - Part 11: Determination of fl exural and compressive strength of hardened mortar. Prague: Czech Standardization Institute, 2000.
 
21.
ČSN 72 7031: Determination of water vapour diffusion coeffi cient of building materials by method without temperature gradient. Prague: Czech Standardization Institute, 2001.
 
22.
E. Vejmelková, M. Pavlíková, M. Jerman, R. Černý, Free water intake as means of material characterization. J. of Building Physics 33, 29-44 (2009).
 
23.
M. K. Kumaran, Moisture diffusivity of building materials from water absorption measurements. J. of Thermal Envelope and Building Science 22, 349-355 (1999).
 
24.
A. Trník, I. Medveď, R. Černý, Measurement of linear thermal expansion coeffi cient of concrete at high temperatures: A comparison of isothermal and non-isothermal method. Cement Wapno Beton 79, 363-372 (2012).
 
25.
R. Černý, P. Rovnaníková, Transport processes in concrete. London: Spon Press, 2002.
 
26.
T. Korecký, M. Keppert, J. Maděra, R. Černý, Water transport parameters of autoclaved aerated concrete: Experimental assessment of different modeling approaches. J. of Building Physics 39, 170-188 (2015).
 
ISSN:1425-8129
Journals System - logo
Scroll to top