Possibilities for optimal use of properties of autoclaved aerated concrete
 
More details
Hide details
1
Politechnika Śląska
 
 
Publication date: 2019-09-25
 
 
Cement Wapno Beton 24(5) 383-399 (2019)
 
ABSTRACT
The extensive research programme was mainly used to learn details about properties of AAC masonry and the effect of various factors, which should be included or neglected at the design phase. Moisture content of AAC was found to have a significant effect, arbitrary defined in standards. The type of used mortar and technology of reinforcement embedding in bed joints is also very important. Results obtained for large and middle-size units indicated the significance of reinforcement, which is completely neglected in standards. Further works will focus on employing the obtained results in analytical models of load-bearing capacity of compressed walls and shear stiffening walls, taking into account the best possible use of AAC. At first, recommendations of Eurocode PN-EN 1990 which allows for design methods based on tests to verify the proposed models.
 
REFERENCES (37)
1.
G. Zapotoczna-Sytek, S. Balkovic, Autoklawizowany beton komórkowy. Technologia, właściwości, zastosowanie. Wydawnictwo naukowe PWN, Warszawa 2013.
 
2.
T. Rybarczyk, Wilgotność elementów i konstrukcji z betonu komórkowego. Materiały Budowlane, 2, p. 26-27 (2019).
 
3.
B. Lewicki, W. Kukulski, J. Pawlikowski, Ściany i słupy z betonu i muru obciążone mimośrodowo. PWN, Warszawa 1962.
 
4.
A.W. Hendry, Reinforced and Prestressed Masonry. Longman Scientifi c & Technical, 1991.
 
5.
S. Sahlin, Structural masonry. Prentice-Hall, New Jersey 1971.
 
6.
Ł. Drobiec, R. Jasiński, A. Piekarczyk, Konstrukcje murowe według Eurokodu 6 i norm związanych. Tom 2. Wydawnictwo Naukowe PWN, Warszawa 2014.
 
7.
H.K. Hilsdorf, Investigation in to the failure mechanism of brick masonry loaded in axial compression. Proceedings of the International Conference on Masonry Structural Systems, Austin, p. 34 (1967).
 
8.
A.W. Page, A biaxial failure criterion for brick masonry In the tensiontension range. International Journal of Masonry Construction. 1, 1, p. 26 (1980).
 
9.
P. Schubert, Mauerwerk. Risse vermeiden und instandsetzen. Fraunhofer IRB Verlag, Stuttgart 2004.
 
10.
Ł. Drobiec, Przeciwdziałanie zarysowaniu ściskanych murów zbrojeniem spoin wspornych, Wydawnictwo Politechniki Śląskiej, seria monografi e nr 452, Gliwice 2013.
 
11.
R. Jasiński, Effects of Opening Shapes on Behaviour of Shear Walls Made of AAC Masonry Units. IOP Conf. Series: Materials Science and Engineering 471 (2019).
 
12.
R. Jasiński, Badania ścian usztywniających z otworami, wykonanych z ABK. Materiały Budowlane. 550, 6, p. 38, (2018).
 
13.
R. Jasiński, Effects of Opening Shapes on Behaviour of Shear Walls Made of AAC Masonry Units. IOP Conf. Series: Materials Science and Engineering 471 (2019). 12. R. Jasiński, Badania ścian usztywniających z otworami, wykonanych z ABK. Materiały Budowlane. 550, 6, p. 38, (2018). 13. I. Galman, R. Jasiński, A ttempt to Describe the Mechanism of Work of Masonry Joints. IOP Conf. Series: Materials Science and Engineering 471 (2019).
 
14.
H.K. Hilsdorf, Investigation in to the failure mechanism of brick masonry loaded in axial compression. Proceedings of the International Conference on Masonry Structural Systems, Austin, p. 34 (1967). 8. A.W. Page, A biaxial failure criterion for brick masonry In the tensiontension range. International Journal of Masonry Construction. 1, 1, p. 26 (1980). 9. P. Schubert, Mauerwerk. Risse vermeiden und instandsetzen. Fraunhofer IRB Verlag, Stuttgart 2004. 10. Ł. Drobiec, Przeciwdziałanie zarysowaniu ściskanych murów zbrojeniem spoin wspornych, Wydawnictwo Politechniki Śląskiej, seria monografi e nr 452, Gliwice 2013. 11. R. Jasiński, Effects of Opening Shapes on Behaviour of Shear Walls Made of AAC Masonry Units. IOP Conf. Series: Materials Science and Engineering 471 (2019). 12. R. Jasiński, Badania ścian usztywniających z otworami, wykonanych z ABK. Materiały Budowlane. 550, 6, p. 38, (2018). 13. I. Galman, R. Jasiński, A ttempt to Describe the Mechanism of Work of Masonry Joints. IOP Conf. Series: Materials Science and Engineering 471 (2019). 14. I. Galman, R. Jasiński, Tests of joints in AAC masonry walls. Architecture Civil Engineering Environment, 11, 4, p. 79 (2018).
 
15.
S. Ali, A.W. Page, Cracking Analysis Of Solid Concrete Masonry Subjected To Concentrated Loads. ACI Structural Journal, 86, 4, p. 367 (1989).
 
16.
R. Jasiński, Size effect of monotonically sheared masonry walls made of AAC masonry units. Ce/Papers, 2, 4, p. E12 (2018).
 
17.
R. Jasiński, Badania i modelowanie murowych ścian usztywniających. Wydawnictwo Politechniki Śląskiej, seria monografi e nr 673, Gliwice 2017.
 
18.
Ł. Drobiec, R. Jasiński, A. Piekarczyk, Konstrukcje murowe według Eurokodu 6 i norm związanych. Tom I. Wydawnictwo Naukowe PWN, Warszawa 2013 (in polish).
 
19.
W. Jäger, P. Schöps, Confi ned masonry - a chance to improve the load bearing capacity. Proceedings of the 5th International Conference on Autoclaved Aerated Concrete, Bydgoszcz, 14-17 September 2011, p. 225.
 
20.
Ł. Drobiec, T. Rybarczyk, K. Grzyb: Mury skrępowane. Wyniki badań. Nowe metody projektowania. XXXIV Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, 5-8 marca 2019 r., t. II, p. 151.
 
21.
R. Jasiński, Comparisons of confi ned and different types of reinforcement on the behavior of masonry shear walls. Ce/Papers, 2, 4, p. 353 (2018).
 
22.
R. Jasiński, T. Gąsiorowski, Morfologia zarysowań ścian skrępowanych ścinanych poziomo. Materiały Budowlane. 560, 4, p. 23 (2018).
 
23.
R. Jasiński, T. Gąsiorowski, Zarysowanie i zniszczenie ścian skrępowanych ścinanych poziomo. Materiały Budowlane, 561, 5, (2019).
 
24.
W. Weibull, A Statistical Theory of Strength of Materials. Ingvetenskaps Handl. 1939.
 
25.
W. Weibull, A statistical distribution function of wide applicability. Journal of Applied Mechanics, 1951, 18, 1951, 293 – 297.
 
26.
W. Mazur, Ł. Drobiec , R. Jasiński, Effects of specimen dimensions and shape on compressive strength of specifi c autoclaved aerated concrete. Ce/Pepers, 2, 4, p. 541 (2018).
 
27.
R. Jasiński, Ł. Drobiec, W. Mazur, Validation of selected non-destructive methods for determining the compressive strength of masonry units made of autoclaved aerated concrete. Materials, 12, 3, art. no. 389, p. 1 (2019).
 
28.
W. Volk, Applied Statistics for Engineers. Literary Licensing, LLC, United States, 2013.
 
29.
J.P. Guilford, Fundamental Statistics in Psychology and Education. McGraw-Hill, 1942.
 
30.
Ł. Drobiec, R. Jasiński, T. Rybarczyk, The infl uence of the type of mortar on the compressive behaviour of walls made of Autoclaved Aerated Concrete (AAC). Brick and Block Masonry – Trends, Innovations and Challenges. Taylor & Francis Group, London 2016, p. 15.
 
31.
R. Jasiński, A. Piekarczyk, L. Misiewicz, Comparison research of kind of mortar infl uence and bed joints reinforcement on shear parameters of AAC masonry walls. Brick and Block Masonry – Trends, Innovations and Challenges. Taylor & Francis Group, London 2016, p. 1659.
 
32.
Ł. Drobiec, Limitation of cracking in AAC masonry under the window zone. Mauerwerk 21, 5, p. 332 (2017).
 
33.
Ł. Drobiec, Tests of AAC walls subjected to vertical loads - Part 1. Zone at the opening. Ce/Papers, 2, 4, p. 319 (2018).
 
34.
Ł. Drobiec, Tests of AAC walls subjected to vertical loads - Part 2. Connection zone of perpendicular walls. Ce/Papers, 2, 4, p. 329 (2018).
 
35.
R. Jasiński , Ł. Drobiec, Effects of Technology of Placing Different Types of Reinforcement in Bed Joints on Compressive and Shear Strength of AAC Masonry Walls. IOP Conf. Series: Materials Science and Engineering 471 (2019).
 
36.
Ł. Drobiec, T. Rybarczyk, Infl uence of reinforced concrete confi ning on the load-bearing capacity of the AAC walls. Ce/Papers, 2, 4, p. 409 (2018).
 
37.
Ł. Drobiec, Badania skrępowanych murów z otworem poddanych obciążeniom pionowym. Inżynieria i Budownictwo, 5, p. 240 (2019).
 
ISSN:1425-8129
Journals System - logo
Scroll to top