Low-emission wollastonite clinker and its effect on the properties of cementitious binders
 
More details
Hide details
1
Łukasiewicz Research Network – Institute of Ceramics and Building Materials, Krakow, Poland
 
2
Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland
 
3
AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Krakow, Poland
 
 
Submission date: 2024-10-18
 
 
Final revision date: 2024-11-12
 
 
Acceptance date: 2024-11-30
 
 
Publication date: 2024-12-07
 
 
Cement Wapno Beton 29(3) 160-170 (2024)
 
KEYWORDS
ABSTRACT
The aim of the investigation was to synthesise clinker based on wollastonite and carbonate it afterwards to be used as a potential new supplementary cementitious material. The clinker was burned in a semi-industrial rotary kiln with a capacity of approx. 50 kg/h at 1240 °C using secondary raw materials. The synthesised clinker was composed mainly of rankinite and pseudowollastonite, which are carbonatable. The burned clinker was treated by direct carbonation in a wet process. The carbonation products included calcium carbonate in various polymorphic forms, as well as an amorphous phase, mainly amorphous silica. The latter can react as a pozzolan in blends with Portland cements. The use of the carbonated clinker as supplementary cementitious material can lead to lower CO2 emissions compared to plain Portland cement, due to the lower consumption of carbonate-containing raw material, the lower synthesis temperature and the possibility of CO2 sequestration.
REFERENCES (40)
1.
International Energy Agency. Technology Roadmap—Low-Carbon Transition in the Cement Industry; International Energy Agency: Paris, France, 2018.
 
2.
D.M. Petroche, A.D. Ramirez, The environmental profile of clinker, cement, and concrete: a life cycle perspective study based on Ecuadorian data. Buildings 12, 311, (2022). https://doi.org/10.3390/buildi....
 
3.
N. Mohamad, K. Muthusamy, R. Embong, A. Kusbiantoro, M. Hanafi Hashim, Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 48, 741–746, (2022). http://doi.org/10.1016/j.matpr....
 
4.
E. Gartner, T. Sui, Alternative cement clinkers. Cem. Concr. Res. 114, 27-39, (2018). https://doi.org/10.1016/j.cemc....
 
5.
R. Snellings, P. Suraneni, J. Skibsted, Future and emerging supplementary cementitious materials. Cem. Concr. Res. 171, 107199 (2023). https://doi.org/10.1016/j.cemc....
 
6.
M. Wieczorek, P. Pichniarczyk, Properties of cement with the low Portland clinker and the different content of silica fly ash as well as granulated blast furnace slag. Cem. Wapno Beton 27(4), 285-299, (2022). https://doi.org/10.32047/CWB.2....
 
7.
CEMBUREAU. Cementing the European Green Dea. Reaching Climate Neutrality along the Cement and Concrete Value Chain by 2050. (2020). Available online: https://cembureau.eu/media/kux... (accessed on 10 September 2024).
 
8.
D. Elzinga, S. Bennett, D. Best, K. Burnard, P. Cazzola, D. D’Ambrosio, J. Dulac, A. Fernandez Pales, C. Hood, M. LaFrance, Energy Technology Perspectives 2015: Mobilising Innovation to Accelerate Climate Action. IEA, (2015). Available online: Energy Technology Perspectives 2015 (accessed on 10 September 2024).
 
9.
McKinsey, Laying the Foundation for a Zero-Carbon Cement Industry. (2020). Available online: https://www.mckinsey.com/indus... (accessed on 15 September 2024).
 
10.
Global Cement and Concrete Association, Concrete future. The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete. (2021). Available online: https://gccassociation.org/con... (accessed on 15 September 2024).
 
11.
M. Zajac, J. Skocek, M. Ben Haha, J. Deja, CO2 mineralization methods in cement and concrete industry. Energies 15(10), 3597, (2022). https://doi.org/10.3390/en1510....
 
12.
M. Zając, I. Maruyama, A. Iizuka, J. Skibsted, Enforced carbonation of cementitious materials. Cem. Concr. Res. 174, (2023). http://doi.org/10.1016/j.cemco....
 
13.
B. Jaworska, M. Janaszek, J. Jaworski, Wpływ skarbonatyzowanych popiołów lotnych na wybrane właściwości zapraw cementowych. Materiały Konferencji Dni Betonu 2023, 1387-1400, (2023).
 
14.
A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 43, 8049-8080, (2014). https://doi.org/10.1039/C4CS00....
 
15.
E.R. Bobicki, Q. Liu, Z. Xu, H. Zeng, Carbon capture and storage using alkaline industrial wastes. Prog. Energ. Combust. 38, 302–320, (2012). https://doi.org/10.1016/j.pecs....
 
16.
S.P. Veetil, M. Hitch, Recent developments and challenges of aqueous mineral carbonation: A review. Int. J. Environ. Sci. Technol. 17, 4359–4380, (2020). https://doi.org/10.1007/s13762....
 
17.
F. Winnefeld, F. Läng, A. Leemann, Pozzolanic Reaction of Carbonated Wollastonite Clinker, ACT 21, 631-642, (2023). https://doi.org/10.3151/jact.2....
 
18.
U.S. Geological Survey, Mineral Commodity Summaries 2022: U.S. Geological Survey. (2022). https://doi.org/10.3133/mcs202....
 
19.
Wollastonite - Wikipedia, (accessed on 15 September 2024).
 
20.
A. Leemann, F. Winnefeld, B. Münch, F. Lang, Carbonated wollastonite - An effective supplementary cementitious material?. J. Microsc. 286(2), 120-125, (2022). https://doi.org/10.1111/jmi.13....
 
21.
B. Xu, B. Lothenbach, F. Winnefeld, Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements. Cem. Concr. Res. 131, 106012, (2020). https://doi.org/10.1016/j.cemc....
 
22.
H. Huang, R. Guo, T. Wang, X. Hu, S. Garcia, M. Fang, Z. Luo, M. Maroto-Valer, Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment. J. Clean. Prod. 211, 830-841, (2019). 10.1016/j.jclepro.2018.11.215.
 
23.
V. Atakan, S. Sahu, S. Quinn, X. Hu, N. DeCristofaro, Why CO2 matters – advances in a new class of cement. ZKG Intern. 3, (2014).
 
24.
S. Sahu, S. Quinn, V. Atakan, N. DeCristofaro, G. Walenta, CO2 Reducing Cement Based on Calcium Silicates. International Congress on the Chemistry of Cement 2014, (2014).
 
25.
S. Sahu, R.C. Meininger, Sustainability and Durability of Solidia Cement Concrete. Based on alternative CO2-functional cement chemistry. Concr. Intern. 42, 29-34, (2020).
 
26.
M. Cisiński, G. Biava, F. Winnefeld, Ł. Sadowski, M.B. Haha, M. Zając, Carbonated calcium silicates as pozzolanic supplementary cementitious materials. Constr. Build. Mater. 443, 137764, (2024). 10.1016/j.conbuildmat.2024.137764.
 
27.
W. Ashraf, J. Olek, Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials. J. Mater. Sci. 51, 6173–6191, (2016). https://doi.org/10.1007/s10853....
 
28.
EN 197-1: Cement - Part 1: Composition, specifications and conformity criteria for common cements.
 
29.
EN 196-2: Method of testing cement - Part 2: Chemical analysis of cement.
 
30.
ISO 10694: Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis).
 
31.
EN 196-6: Methods of testing cement - Part 6: Determination of fineness.
 
32.
D. Jansen, C. Stabler, F. Götz-Neunhoeffer, S. Dittrich, J. Neubauer, Does ordinary Portland cement contain amorphous phase? A quantitative study using an external standard method. Powd. Diffr. 26(1), 31-38, (2011). doi:10.1154/1.3549186.
 
33.
EN 196-1: Methods of testing cement - Part 1: Determination of strength.
 
34.
M. Handke, Vibrational Spectra, Force Constants, and Si-O Bond Character in Calcium Silicate Crystal Structure. J. Appl. Spectr. 40(6), 871-877, (1986). doi:10.1366/0003702864508322.
 
35.
I.F. Saez Del Bosque, S. Martınez-Ramırez, M.T. Blanco-Varela, FTIR study of the effect of temperature and nanosilica on the nano structure of C-S-H gel formed by hydrating tricalcium silicate. Constr. Build. Mater. 52, 314–323, (2014). 10.1016/j.conbuildmat.2013.10.056.
 
36.
L. Fernandez-Carrasco, D. Torrens-Martın, L.M. Morales, S. Martınez-Ramırez, Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectroscopy, 369–382, (2012). https://doi.org/10.5772/36186.
 
37.
T. Baran, M. Ostrowski, H. Radelczuk, P. Francuz, The methods of Portland cement clinker production assuring low CO2 emission. Cem. Wapno Beton 21(6), 389-395, (2016).
 
38.
T. Baran, The use of waste and industrial by-products and possibilities of reducing CO2 emission in the cement industry – industrial trials, Cem. Wapno Beton 25(3), 169-184, (2021). https://doi.org/10.32047/CWB.2....
 
39.
G. Plusquellec, A. Babaahmadi, E. L’Hopital, U. Mueller, Activated clays as supplementary cementitious material (RISE Report 2021:25). RISE Research Institutes of Sweden, (2021).
 
40.
Wskaźniki emisyjności CO2, SO2, NOx, CO i pyłu całkowitego dla energii elektrycznej na podstawie informacji zawartych w Krajowej bazie o emisjach gazów cieplarnianych i innych substancji za 2022 rok, Zespół Zarządzania Krajową Bazą KOBiZE (2023), Available online: Ósmy Raport rządowy i Piąty Raport dwuletni w sprawie zmian klimatu (accessed on 15 September 2024).
 
ISSN:1425-8129
Journals System - logo
Scroll to top