Modeling of liquid fl ow through the porous materials of different microstructure
,
 
 
 
More details
Hide details
1
Faculty of Materials Science and Ceramics, The Department of Physical Chemistry and Modelling, AGH University of Science and Technology
 
 
Publication date: 2017-11-01
 
 
Cement Wapno Beton 22(6) 489-506 (2017)
 
ACKNOWLEDGEMENTS
This work was supported by AGH, Grant No. 11.11.160.768
REFERENCES (36)
1.
E. Lac oste, O. Mantaux, M. Danis, Numerical simulation of metal matrix composites and polymer matrix composites processing by infi ltration: a review. Compos Part A., 33, 1605–1614 (2002).
 
2.
C. Chang, Simulation of molten metal through a unidirectional fi brous preform during MMC processing, Journal of Materials Processing Technology, 209, 4337–4342 (2009).
 
3.
L. Bertolini, M. Gastaldi, M. Pedeferri, E. Redaelli, Prevention of steel corrosion in concrete exposed to seawater with submerged sacrifi cial anodes.Corossion Science, 44, 1497–1513 (2002).
 
4.
S. Kranc, Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures, Corossion, 50, 50-61 (1994).
 
5.
T. Kaneko, J. Bennett, S. Sridhar, Effect of Temperature Gradient on Industrial Gasifi er Coal Slag, J. Am Ceram. Soc., 94, 4507–4515 (2011).
 
6.
J. Walton, Fluid fl ow and placement of concrete vaults in the saturated or unsaturated zone, Waste Manegment, 11, 3-10 (1991).
 
7.
M. Chaparro, J. Soler, M. Saaltink, U. Mäder, Reactive Transport Models of a High-pH Infi ltration Test in Concrete, Phys Chem Earth (2017).
 
8.
K. Vafai, Handbook of Porous Media. Third Edition, CRC Press, 2015.
 
9.
M. Rappaz, M. Bellet, M. Deville, Numerical Modeling in Materials Science and Engineering, Springer 20.
 
10.
L. Landau, J. Lifszyc, Hydrodynamika, Wydawnictwo Nauokowe PWN, 2009.
 
11.
S. Whitaker, Flow in Porous Media I: A Theorical Derivation of Darcy’s Law. Vol. 1, Transport in Porous Media, 1, 3–25 (1986).
 
12.
H. Brinkman, A calculation of the viscous force exerted by a fl owing fl uid on a dense swarm of particles, Appl Sci Res, 2, 155–161 (1951).
 
13.
M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, Wiley, 2011.
 
14.
R. Cook, K. Hover, Mercury porosimetry of hardened cement pastes. Cem Concr Res., 22, 933–943 (1999).
 
15.
5. C. Leon, New perspectives in mercury porosimetry, Adv Colloid Interface Sci., 76–77, 341–372 (1998)
 
16.
W. Martin, B. Putman, N. Kaye, Using image analysis to measure the porosity distribution of a porous pavement, Constr Build Mater, 48, 210-217 (2013).
 
17.
B. Münch, L. Holzer, Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion, J Am Ceram Soc, 91, 4059–4067 (2008).
 
18.
G. Brown, Henry Darcy and the making of a law, Water Resour Res., 38, 1–12 (2002).
 
19.
G. Rajesh, R. Bhagat, Infi ltration of liquid metals in porous compacts: Modeling of permeabilities during reactive melt infi ltration, Transport in Porous Media, 36, 43–68 (1999).
 
20.
R. Vallabh, P. Banks-lee, A. Seyam, New Approach for Determining Tortuosity in Fibrous Porous Media, J Eng Fiber Fabr, 5, 7–15 (2010).
 
21.
B. Yu, J. Li, A Geometry Model for Tortuosity of Flow Path in Porous Media, Chinese Phys Lett, 21, 1569–1571 (2004).
 
22.
M. Yun, B. Yu, B. Zhang, M. Huang, A Geometry Model for Tortuosity of Streamtubes in Porous Media with Spherical Particles, Chinese Phys Lett, 22, 1464–1467 (2005).
 
23.
J. Comiti, M. Renaud, A new model for determininig mean structure parameters of fi xed beds from pressure drop measurements: application to beds packed with parallelepipedal particles, Chem Eng Sci., 44, 1539–1545 (1989).
 
24.
Z. Fellah, M. Fellah, W. Lauriks, C. Depollier, Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material, J Acoust Soc Am., 113, 61–72 (2014).
 
25.
S. Rigby, L. Gladden, NMR and Fractal Modeling Studies of Transport in Porous Media, Chem Enguneering Sci., 51, 2263–2272 (1996).
 
26.
S. Haskett, G. Narahara, S. Holditch, A method for simultaneous determination of permeability and porosity in low-permeability cores. SPE Form Eval, 3, 651–658 (1988).
 
27.
P. Carman, Fluid fl ow through granular beds, Chem. Eng. Res. Des., 75, 32-48 (1932).
 
28.
J. Katagiri, Y. Konno, J. Yoneda, N. Tenma, Pore-scale modeling of fl ow in particle packs containing grain-coating and pore-fi lling hydrates: Verifi cation of a Kozeny–Carman-based permeability reduction model, J. Nat. Gas. Sci. Eng. (2017). 506 CWB-6/2017.
 
29.
A. Costa, Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophisical Res. Lett., 33, 1-5 (2006).
 
30.
E. Rodriguez, F. Giacomelli, A. Vazquez, Permeability-Porosity Relationship in RTM for Different Fiberglass and Natural Reinforcements, J. Compos. Mater., 38, 259–68 (2004).
 
31.
H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous fl ow past a cubic array of spheres, J. Fluid. Mech., 5, 317-328 (1959).
 
32.
A. Sangani, A. Acrivos, Slow fl ow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiph. Flow., 8, 193–206 (1982).
 
33.
B. Gebart, Permeability of Unidirectional Reinforcements for RTM, J. Compos Mater., 8, 1100–1133 (1992).
 
34.
D. Clague, R. Phillips, A numerical calculation of the hydraulic permeability of three-dimensional disordered fi brous media, Phys. Fluids, 9, 1562-1572 (1997).
 
35.
S. Zhang, M. Zhu, X. Zhao, D. Xiong, H. Wan, S. Bai, A pore-scale, two-phase numerical model for describing the infi ltration behaviour of SiCp/ Al composites, Compos. Part A, 90, 71-81 (2016).
 
36.
D. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2008.
 
ISSN:1425-8129
Journals System - logo
Scroll to top