Moisture and heat transport and storage characteristics of two commercial autoclaved aerated concretes
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
 
 
Publication date: 2011-01-01
 
 
Cement Wapno Beton 16(1) 18-29 (2011)
 
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under grant No. 103/09/0016.
REFERENCES (19)
1.
M. Albayrak, A. Yorukoglu, S. Karahan, S. Atlihan, H.Y. Aruntas, I. Girgin, Infl uence of zeolite additive on properties of autoclaved aerated concrete. Building and Environment 42, 3161-3165 (2007).
 
2.
G. Zapotoczna-Sytek, J. Zmywaczyk, P. Koniorczyk, K. Lubińska, B. Górska, Investigations of ‘thickness effect curve’ in sand autoclaved aerated concrete (SAAC 500). Cement Wapno Beton 14, 301-307 (2009).
 
3.
H. Kurama, I.B. Topcu, C. Karakurt, Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology 209, 767–773 (2009).
 
4.
A. Laukaitis, J. Keriene, D. Mikulskis, M. Sinica, G. Sezemanas, Infl uence of fi brous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products. Construction and Building Materials 23, 3034–3042 (2009).
 
5.
C. Karakurt, H. Kurama, I.B. Topçu, Utilization of natural zeolite in aerated concrete production. Cement & Concrete Composites 32, 1–8 (2010).
 
6.
F. Wagner, G. Schober, H. Mortel, Measurement of the gas-permeability of autoclaved aerated concrete in conjunction with its physical-properties. Cement and Concrete Research 25, 1621-1626 (1995).
 
7.
F.R. Gottfredsen, H.H. Knutsson, A. Nielsen, Determination of length changes due to moisture variations in autoclaved aerated concrete. Materials and Structures 30, 148-153 (1997).
 
8.
M. Janz, Moisture diffusivities evaluated at high moisture levels from a series of water absorption tests. Materials and Structures 35, 141-148 (2002).
 
9.
M.S. Goual, A. Bali, F. de Barquin, R.M. Dheilly, M. Quéneudec, Isothermal moisture properties of Clayey Cellular Concretes elaborated from clayey waste, cement and aluminium powder. Cement and Concrete Research 36, 1768–1776 (2006).
 
10.
I. Ioannou, A. Hamilton, C. Hall, Capillary absorption of water and ndecane by autoclaved aerated concrete. Cement and Concrete Research 38, 766–771 (2008).
 
11.
S. Tada, K. Watanabe, Dynamic determination of sorption isotherm of cement based materials. Cement and Concrete Research 35, 2271-2277 (2005).
 
12.
S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Černý, Z. Pavlík, C. Hall, K. Kumaran, L. Pel, R. Plagge, Interlaboratory Comparison of Hygric Properties of Porous Building Materials. Journal of Thermal Envelope and Building Science 27, 307-325 (2004).
 
13.
E. Vejmelková, M. Pavlíková M. Jerman, R. Černý, Free Water Intake as Means of Material Characterization. Journal of Building Physics 33, 29-44 (2009).
 
14.
M.K. Kumaran, Moisture Diffusivity of Building Materials from Water Absorption Measurements. Journal of Thermal Envelope and Building Science 22, 349-355 (1999).
 
15.
P. Semerák, R. Černý, A Capacitance Method for Measuring Moisture Content of Building Materials. Stavební obzor 6, 102-103 (1997) (in Czech).
 
16.
C. Matano, On the relation between the diffusion coeffi cient and concentration of solid metals. Jap. J. Phys. 8, 109-115 (1933).
 
17.
R. Černý, P. Rovnaníková, Transport Processes in Concrete. Spon Press, London 2002.
 
18.
Xella – technical parameters of products. URL: http://www.xella.cz/ downloads/czk/product/ytong-lambda.pdf.
 
19.
H+H – technical parameters of products. URL: http://www.hplush. cz/c/document_library/get_fi le?folderId=528926&name=DLFE-11218.pdf.
 
ISSN:1425-8129
Journals System - logo
Scroll to top