Corrosion of blastfurnace slag paste in aqueous solution of NH4Cl
 
More details
Hide details
1
Politechnika Śląska, Wydział Budownictwa
 
2
Instytut Ceramiki i Materiałów Budowlanych, Oddział Materiałów Ogniotrwałych
 
3
Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki
 
 
Publication date: 2019-07-13
 
 
Cement Wapno Beton 24(3) 202-214 (2019)
 
KEYWORDS
ABSTRACT
The paper presents the results of investigation on the corrosion process of alkali activated blast furnace slag paste. As the activator, a 5% addition of sodium silicate was used. The ground slag with activator was mixed with water in a mass w/s ratio = 0.4. After 5 months of curing in water, one of the samples was immersed for 19 days in a saturated aqueous solution of NH4Cl. Concentration of the solution was equal to 27%, which corresponds to an NH4+ concentration of about 7.2 mole/dm3. Macroscopic observations of the fracture of the sample immersed in the ammonium chloride solution did not show any visual changes. The tests carried out showed that the course of corrosion was zonal – several fronts were created, similar to corrosion of cement paste. In layers at the edge, an increased content of calcium carbonate and aluminium, probably in the form of gibbsite was found. The microstructure at the surface, to a depth of approx. 4.5 mm, was not porous or cracked. Its discontinuities were filled with carbonation products. No crystalline sulphate or ammonium phases were detected. NaCl crystallization was caused by a sodium activator. The aluminium was leached out of the C-A-S-H phase from a depth of about 8 mm and moved towards the surface of the sample. The content of sulphate ions decreased linearly towards the outer surface of the sample.
REFERENCES (26)
1.
H. Kühl, Zement Chemie, Verlag Technik, Berlin (1952).
 
2.
A. Fernández-Jiméneza, J.G. Palomob , F. Puertasa „Alkali-activated slag mortars. Mechanical strength behaviour”, Cem. Concr. Res. 29, 1313–1321 (1999).
 
3.
V.D. Glukhovsky, et al., „High strength slag-alkaline cements”, 7th ICCC, Vol. 3, Paris, V164–V168 (1980).
 
4.
S. Aydın, B. Baradan, „Effect of activator type and content on properties of alkali-activated slag mortars”, Compos. Part B Eng., 57, 166-172 (2014).
 
5.
R. Benesch, Konstrukcja wielkiego pieca i jego urządzeń pomocniczych, AGH,Kraków,1985.
 
6.
T. Baran, P. Francuz, „Właściwości cementów żużlowych z dodatkiem granulowanego żużla wielkopiecowego o różnej zawartości szkła”, Cement Wapno Beton 82, 6, 375-382 (2015).
 
7.
D.M. Roy, “Alkali-activated cements. Opportunities and challenges”, Cem. Concr. Res., 29, 249-254 (1999).
 
8.
N. Li, N. Farzadnia, C. Shi, „Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation, Cem. Concr. Res., 47, 214-226 (2017).
 
9.
H. Ye, A. Radlińska, „Carbonation-induced volume change in alkaliactivated slag”, Constr. Build. Mat., 144, 635-644 (2017).
 
10.
H.W. Song, V.Saraswathy, „Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag — An overview”, Journal of Hazardous Materials, 138, 2, 226-233 (2006).
 
11.
S.W. Yoo, S.J. Kwon,”Effects of cold joint and loading conditions on chloride diffusion in concrete containing GGBFS”, Constr. Build. Mat., 115, 247-255 (2016).
 
12.
K.-I. Song, J.-K. Song, B.Y. Lee, K.-H. Yang, „Carbonation characteristics of alkaliactivated blast-furnace slag mortar”, Adv. Mater. Sci. Eng. 2014 (2014).
 
13.
M. Komljenović, Z. Baščarević, N. Marjanović, V. Nikolić, „External sulfate attack on alkali-activated slag”, Constr. Build. Mat., 49, 31-39 (2013).
 
14.
B. Słomka-Słupik, J. Podwórny, D. Łukowiec, „Corrosion of blastfurnance slag paste in aqueous solution of (NH4)2SO4”, Cement Wapno Beton 21, 6, 379-387 (2016).
 
15.
H. El-Didamony, A.A. Amer, H.A. Ela-ziz „Properties and durability of alkali-activated slag pastes immersed in sea water”, Ceramics International, 38, 5, 773-3780 (2012).
 
16.
EN196-2:2005 - Metody badania cementu. Część 2 : Analiza chemiczna cementu.
 
17.
B. Słomka-Słupik, J. Podwórny, M. Staszuk, „Corrosion of cement pastes made of CEM I and CEM III/A caused by a saturated water solution of ammonium chloride after 4 and 25 days of aggressive immersion”, Constr. Build. Mat., 170, 10 May 2018, 279-289 (2018).
 
18.
B. Słomka-Słupik., A. Zybura: „Korozja zaczynów z cementów portlandzkich CEM I 42,5R i CEM I 42,5R-HSR/NA w roztworze chlorku amonu” Cement Wapno Beton 17, 144-148 (2012).
 
19.
B. Słomka-Słupik, A. Zybura: „Zmiany mikrostruktury zaczynu poddanego dekalcyfi kacji”, Cement Wapno Beton 15, 333-339 (2010).
 
20.
J.J. Beaudoin, V.S. Ramachandran, R.F. Feldman, Cem. Concr. Res. 20,875 (1990).
 
21.
L. Divet, R. Randriambololona, D. Leger, Silicates Ind., 70 , 25 (2007).
 
22.
J. Desarnaud et al. „The Pressure induced by salt crystallization in confi nement”, Sci. Rep. 6, 30856; doi: 10.1038/srep30856 (2016).
 
23.
N. Shahidzadeh-Bonn, J. Desarnaud, F. Bertrand, X. Chateau, D. Bonn, „Damage in porous media due to salt crystallization” Phys. Rev. E. 81, 066110 (2010). 22. K. Sekine, A. Okamoto, K. Hayashi, „In situ observation of the crystallization pressure induced by halite crystal growth in a microfl uidic channel”, American Mineralogist. 96, 1012–1019 (2011). 23. W. Kurdowski, S. Duszak, F. Sorrentino. „Corrosion of gehlenit hydrate in strong chloride solution” w „Calcium Aluminate Cements” (red. R.J. Mangabhai, F.P.Glasser), s. 371, IOM Communications, London (2001).
 
24.
K. Sekine, A. Okamoto, K. Hayashi, „In situ observation of the crystallization pressure induced by halite crystal growth in a microfl uidic channel”, American Mineralogist. 96, 1012–1019 (2011).
 
25.
W. Kurdowski, S. Duszak, F. Sorrentino. „Corrosion of gehlenit hydrate in strong chloride solution” w „Calcium Aluminate Cements” (red. R.J. Mangabhai, F.P.Glasser), s. 371, IOM Communications, London (2001).
 
26.
U.A. Birnin-Yauri, F.P. Glasser, „Friedel’s Salt: its solid solutions and their role in chloride binding”, Cement and Concrete Research, 28, 12, 1713-1723 (1998).
 
ISSN:1425-8129
Journals System - logo
Scroll to top