Innovative applications of fibers in concrete: Research and design methods of shear capacity
 
More details
Hide details
1
Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology
 
2
Astra Technologia Betonu sp. z o.o.
 
 
Publication date: 2024-09-30
 
 
Cement Wapno Beton 29(2) 93-107 (2024)
 
KEYWORDS
ABSTRACT
The aim of the conducted research is to determine the failure model of two-span beams with dispersed reinforcement in the form of steel and basalt fibers. Experimental studies of two-span beams with a cross-section of 120×300 mm and a length of 4150 mm focused on observing changes in the behavior of the tested elements depending on the amount of shear reinforcement and the type of fibers. The beams had varied stirrup spacing. The content of steel fibers was 78.5 kg/m3 [1.0%], and the content of basalt fibers was 5.0 kg/m3 [0.19%]. Concrete beams without fibers were also tested. To assess the impact of the presence of fibers on shear capacity, calculations of the load-bearing capacity of beams with longitudinal reinforcement and dispersed reinforcement in the form of basalt or steel fibers were carried out in accordance with the recommendations of standards PN-EN 1992-1-1 (1), fib Model Code 2010 (2,3), German Committee for Reinforced Concrete DIN 2012 (4), and RILEM TC 162-TDF 2003 (5).
REFERENCES (23)
1.
EN 1992-1-1:2008 Eurokod 2 Design of concrete structures - Part 1-1: General rules and rules for buildings, Polski Komitet Normalizacji, 2008.
 
2.
A. Ajdukiewicz, Pre – norma Konstrukcji Betonowych fib Model Code 2010, t. 1. Kraków: Polska Grupa Narodowa fib SPC, 2014.
 
3.
A. Ajdukiewicz, Pre – norma Konstrukcji Betonowych fib Model Code 2010, t. 2. Kraków.: Polska Grupa Narodowa fib SPC, 2014.
 
4.
DAfStb‐Richtlinie Stahlfaserbeton. Deutscher Ausschuss für Stahlbeton. Berlin, German, 2011.
 
5.
RILEM TC 162 – TDF Test and design methods for steel fibre reinforced concrete, Mater. Struct. 36, 560–567 (2003).
 
6.
M. A. Glinicki, Beton ze zbrojeniem strukturalnym. XXV Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, 2011, s. 30.
 
7.
M. Kosior-Kazberuk, J. Krassowska, Fracture behaviour of basalt and steel fibre reinforced concrete. Budownictwo i Inżynieria Środowiska 6(2), 73-80 (2015),.
 
8.
J. Krassowska, Effect of fibers reinforcement on shear capacity of double span reinforced concrete beams. Budownictwo, 111(5), 137-142 (2014).
 
9.
M. Kosior-Kazberuk, J. Krassowska, A. Vidales Barriguete, C. Piña Ramirez, Fracture Parameters of Basalt Fiber Reinforced Concrete. Anales de Edificación 4(3), 52-58 (2018). https://doi.org/10.20868/ade.2....
 
10.
W. Li, J. Xu, Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng. A, 513–514, 145–153 (2009). http:/doi.org/10.1016/j.msea.2009.02.033.
 
11.
N. Kabay, Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 50, 95–101 (2014). https:/doi.org/10.1016/j.conbuildmat.2013.09.040.
 
12.
G. Batson, E. Jenkins, R. Spatney, Steel Fibers as Shear Reinforcement in Beams. ACI Struct. J. 69(10), 640‐644 (1972).
 
13.
G. R. Williamson i L. I. Knab, „Full Scale Fiber Concrete Beam Tests”, zaprezentowano na RILEM symposium on fiber reinforced cement concrete., London: Lancaster, PA: Construction Press, wrz. 1975, s. 209–214.
 
14.
R. W. Lafraugh, S. E. Moustafa, Experimental Investigation of the Use of Steel Fibers for Shear Reinforcement. Concrete Technology Associates, Tacoma, Wash, Technical Report, 1975.
 
15.
R. N. Swamy i H. M. Bahia, The Effectiveness of Steel Fibers as Shear Reinforcement. Concr. Int. 7(3) 35–40 (1985).
 
16.
A. K. Sharma, Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI J. Proc. 83(4), 624–628 (1986). https://doi.org/10.14359/10559.
 
17.
E. I. El-Niema, Reinforced Concrete Beams With Steel Fibers Under Shear. Struct. J. 88(2) 178–183 (1991). https://doi.org/10.14359/2676.
 
18.
K. H. Tan, K. Murugappan, P. Paramasivam, Shear Behavior of Steel Fiber Reinforced Concrete Beams. Struct. J. 90(1), 3–11 (1993).
 
19.
S. Furlan, J. B. de Hanai, Shear behaviour of fiber reinforced concrete beams. Cem. Concr. Comp. 19(4), 359–366 (1997), https://doi.org/10.1016/S0958-....
 
20.
H. Aoude, M. Belghiti, W. D. Cook, D. Mitchell, Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups, Struct. J. 109(3), 359–368 (2012). https://doi.org/10.14359/51683....
 
21.
F. Minelli, G. A. Plizzari, On the Effectiveness of Steel Fibers as Shear Reinforcement. Struct. J. 110(3), 379–390 (2013). https://doi.org/10.14359/51685....
 
22.
T. Godycki-Ćwirko, Ścinanie w żelbecie. Warszawa: Arkady, 1986.
 
23.
R. N. Swamy, R. Jones, T. P. Chiam, Shear Transfer in Steel Fiber Reinforced Concrete. ACI Symp. Pap. 105, 565–592 (1987). https://doi.org/10.14359/2217.
 
ISSN:1425-8129
Journals System - logo
Scroll to top