Classification of brown coal fl y ash fractions by wet, magnetic separation methods, and determination of physical, morphological, and chemical properties of separated fractions, Part 1
 
More details
Hide details
1
Faculty of Civil Engineering, Department of Mechanics, Czech Technical University, Prague, Czech Republic
 
2
Department of Highways, Parson International, Qatar
 
 
Publication date: 2017-05-01
 
 
Cement Wapno Beton 22(3) 249-259 (2017)
 
ACKNOWLEDGEMENTS
The authors would like to thank Buildings and Settlement Information Modelling, Technology and Infrastructure for Sustainable Development under the project TE 02000077 by TAČR for providing funding for this research.
 
REFERENCES (24)
1.
P. Duxson, J. L. Provis, Designing precursors for geopolymer cements, J. Am. Ceram. Soc., 91, 3864–3869 (2008).
 
2.
M. Aboustait, T. Kim, M. Tyler Ley, J. M. Davis, Physical and chemical characteristics of fl y ash using automated scanning electron microscopy, Constr. Build. Mat., 106, 1–10 (2016).
 
3.
R. S. Blissett, & N. A. Rowson, A review of the multi-component utilization of coal fl y ash, Fuel, 97, 1–23 (2012).
 
4.
H. T. B. M. Petrus, Tsuyoshi Hirajima, Yuji Oosako, Moriyasu Nonaka, Keiko Sasaki, Takashi Ando, Performance of dry-separation processes in the recovery of cenospheres from fl y ash and their implementation in a recovery unit, Intern. J. of Mineral Processing, 98, 15–23 (2011).
 
5.
K. H. Pedersen, A. D. Jensen, M. S. Skjoth-Rasmussen, K. Dam-Johansen A review of the interference of carbon containing fl y ash with air entrainment in concrete, Prog. Energy Combust. Sci., 34, 135–54 (2008).
 
6.
L. Ngu, H. Wu and D. Zhang, Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations, Energy Fuels, 21, 3437–3445 (2007).
 
7.
P. K. Kolay, S. Bhusal, Recovery of hollow spherical particles with two different densities from coal fl y ash and their characterization, Fuel 117, 118–124 (2014).
 
8.
J. Li, A. Agarwal, S. M. Iveson, A. Kiani, J. Dickinson, J. Zhou, K. P. Galvin, Recovery and concentration of buoyant cenospheres using an Inverted Refl ux Classifi er, Fuel Process. Techn., 123, 127–139 (2014).
 
9.
S.V. Vassilev, R. Menendez, A. G. Borrego, M. Diaz-Somoano, M. R. Martinez-Tarazona, Phase-mineral and chemical composition of coal fl y ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates, Fuel, 83, 1563–83 (2004).
 
10.
O. M. Sharonova, N. N. Anshits, M. A. Fedorchak, A. M. Zhizhaev, A. G. Anshits, Characterization of Ferrospheres Recovered from High-Calcium Fly Ash, Energy Fuel, 29, 5404−5414 (2015).
 
11.
A. Rawle, The importance of particle sizing to the coatings industry. Part 1: particle size measurement, Adv. Colour Sci. Technol., 5, 1–12 (2002).
 
12.
B. Y. Shekunov, P. Chattopadhyay, H. H. Y. Tong, A. H. L. Chow, Particle size analysis in pharmaceutics: principles, methods and applications, Pharm. Res., 24, 203–227 (2007).
 
13.
O. Scheibelhofer, M. O. Besenhard, M. Piller, J. G. Khinast, Comparing particle size distributions of an arbitrary shape, Powder Technology, 294, 134–145 (2016).
 
14.
J. Blondeau, R. Kock, J. Mertens, A. J. Eley, L. Holub, Online monitoring of coal particle size and fl ow distribution in coal- fi red power plants: Dynamic effects of a varying mill classifi er speed, Applied Thermal Engineering, 98, 449–454 (2016).
 
15.
S. H. Lee, E. Sakai, M. Daimon, W. K. Bang, Characterization of fl y ash directly collected from electrostatic precipitator, Cem. Concr. Res., 29, 1791 – 1797 (1999).
 
16.
S. H. Lee, H. J. Kim, E. Sakai, M. Daimon, Effect of particle size distribution of fl y ash–cement system on the fl uidity of cement pastes, Cem. Concr. Res., 33, 763 – 768 (2003).
 
17.
M. Zyrkowski, R. Costa Neto, L. F. Santos, K. Witkowski, Characterization of fl y-ash cenospheres from coal-fi red power plant unit, Fuel, 174, 49–53 (2016).
 
18.
X. L. Zhang, G. J. Wu, T. D. Yao, et al., Characterization of individual fl y ash particles in surface snow at Urumqi Glacier, No. 1, Eastern Tianshan, Chinese Sci Bull., 56, 3464−3473 (2011).
 
19.
Y. Zhao, J. Zhang, J. Sun, X. Bai, C. Zheng, Mineralogy, Chemical Composition, and Microstructure of Ferrospheres in Fly Ashes from Coal Combustion, Energy & Fuels, 20, 1490-1497 (2006).
 
20.
E. V. Sokol, V. M. Kalugin, E. N. Nigmatulina, N. I. Volkova, A. E. Frenkel, N. V. Maksimova, Ferrospheres from fl y ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions, Fuel 81, 867-876 (2002).
 
21.
Sh. R. Malikov, V. P. Pikul, N. M. Mukhamedshina, V. N. Sandalov, S. Kudiratov, E. M. Ibragimova, Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash, J. of Magnetics, 18, 365-369 (2013).
 
22.
Q. F. Xue, S. G. Lu, Microstructure of ferrospheres in fl y ashes: SEM, EDX and ESEM analysis, Journal of Zhejiang University, SCIENCE A, 9, 1595-1600 (2008).
 
23.
M. Zyrkowski, R. Costa Neto, L. F. Santos, K. Witkowski, Characterization of fl y-ash cenospheres from coal-fi red power plant unit, Fuel, 174, 49–53(2016).
 
24.
A. G. Anshits, O. M. Sheronova, N. N. Anshits, S. N. Vereshchagin, E. V. Rabchevskii, L. A. Solovjev, Ferrospheres from fl y ashes: composition and catalystic properties in high-temperature oxidation of methane, World of Coal Ash (WOCA),Int. Conference, USA (2011).
 
ISSN:1425-8129
Journals System - logo
Scroll to top