Fire performance and characterization of geopolymer foams using fly ash and coal gangue
 
More details
Hide details
1
Cracow University of Technology, Faculty of Civil Engineering, Department of Building Materials Engineering, 24 Warszawska Street, 31-155 Cracow, Poland
 
2
Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Engineering, 37 Jana Pawła II Street, 31-864 Cracow, Poland
 
 
Submission date: 2023-09-22
 
 
Final revision date: 2023-12-14
 
 
Acceptance date: 2024-11-16
 
 
Publication date: 2024-12-08
 
 
Corresponding author
Katarzyna Mróz   

Cracow University of Technology, Faculty of Civil Engineering, Department of Building Materials Engineering, 24 Warszawska Street, 31-155 Cracow, Poland
 
 
Cement Wapno Beton 29(3) 212-232 (2024)
 
KEYWORDS
TOPICS
ABSTRACT
The paper introduces foamed geopolymers as effective thermal insulation materials for buildings, with the ability to withstand high temperatures. The production methods for achieving a porous microstructure in geopolymers are discussed, emphasizing the use of foaming agents like aluminium powder. The presented research focuses on developing geopolymer foams from industrial waste materials [fly ash and coal gangue] with enhanced thermal and fire resistance while maintaining robust mechanical properties. The novelty lies in evaluating these foams at a medium-sized panel scale [750 mm x 750 mm x thickness] and assessing their fire resistance through comprehensive tests, differentiating it from existing literature that primarily explores smaller-scale materials. Class F fly ash from Skawina power plant, Poland and waste rock from coal mining KWK Wieczorek, Katowice, Poland were used for preparation of geopolymer foam. The research aims to contribute insights into the fire performance of geopolymer foams under ISO 834-1 fire scenario, paving the way for potential applications as thermal insulation panels in building facilities. Results from fire exposure tests, post-fire mechanical property assessments, SEM observations, EDS analyses, XRD analyses, as well as ageing effects are presented and discussed. While foamed geopolymers demonstrate resilience and fire resistance, variations in their mechanical properties and microstructure due to fire exposure are highlighted. The research underlines the potential of employing geopolymer foams as a sustainable solution for thermal insulation in construction, opening up further exploration and application in the construction industry.
REFERENCES (45)
1.
J.G.J. Olivier, G. Janssens-Maenhout, J.A.H.. Peters, Trends in Global CO2 Emissions: Report 2012, 2012.
 
2.
Y.S. Wang, Y. Alrefaei, J.G. Dai, Silico-aluminophosphate and alkali-aluminosilicate geopolymers: A comparative review. Front. Mater. 6, 1–17 (2019). https://doi.org/10.3389/fmats.....
 
3.
K. Korniejenko, W.T. Lin, H. Šimonová, Mechanical properties of short polymer fiber-reinforced geopolymer composites. J. Compos. Sci. 4, 1–22 (2020). https://doi.org/10.3390/jcs403....
 
4.
J. Mikuła, K. Korniejenko, eds., Innovative, cost effective and eco-friendly fibre-based materials for construction industry, Wydanie Politechniki Krakowskiej, Cracow, 2015.
 
5.
J. Davidovits, Environmentally Driven Geopolymer Cement Applications, Geopolymer 2002 Conf. (2002) 1–9.
 
6.
J. Davidovits, Geopolymer Chemistry and Applications, 4th ed., Geopolymer Institute, Saint-Quentin, 2015.
 
7.
W. Sekkal, A. Zaoui, Thermal and acoustic insulation properties in nanoporous geopolymer nanocomposite. Cem. Concr. Compos. 138, 104955 (2023). https://doi.org/10.1016/j.cemc....
 
8.
C. Leiva, Y. Luna-Galiano, C. Arenas, B. Alonso-Fariñas, C. Fernández-Pereira, A porous geopolymer based on aluminum-waste with acoustic properties. Waste Manag. 95, 504–512 (2019). https://doi.org/10.1016/j.wasm....
 
9.
F. Fan, Z. Liu, G. Xu, H. Peng, C.S. Cai, Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. 160, 66–81 (2018). https://doi.org/10.1016/j.conb....
 
10.
M.R. Król, T.Z. Błaszczyński, Geopolimery w budownictwie. Izolacje. 18, 38–43 (2013).
 
11.
A.M. Balachandra, N. Abdol, A.G.N.D. Darsanasiri, K. Zhu, P. Soroushian, H.E. Mason, Landfilled coal ash for carbon dioxide capture and its potential as a geopolymer binder for hazardous waste remediation. J. Environ. Chem. Eng. 9, 105385 (2021). https://doi.org/10.1016/j.jece....
 
12.
K. Korniejenko, J. Mikuła, Przegląd technologii immobilizacji odpadów niebezpiecznych z wykorzystaniem geopolimerów = Overview of geopolymers for hazardous waste immobilisation, in: J. Mikuła (Ed.), Rozw. Proekol. w Zakr. Prod. Nowocz. Mater. Kompoz. Przyjazne Środowisku Pr. Zbior. T. 1, Wydawnictwo Politechniki Krakowskiej, 2014: pp. 161–179.
 
13.
M. Sandanayake, C. Gunasekara, D. Law, G. Zhang, S. Setunge, D. Wanijuru, Sustainable criterion selection framework for green building materials – An optimisation based study of fly-ash Geopolymer concrete. Sustain. Mater. Technol. 25, e00178 (2020). https://doi.org/10.1016/j.susm....
 
14.
G. Huang, Y. Ji, J. Li, Z. Hou, Z. Dong, Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content. Constr. Build. Mater. 166, 760–768 (2018). https://doi.org/10.1016/j.conb....
 
15.
K.-L. Lin, K.-W. Lo, T.-W. Cheng, W.-T. Lin, Y.-W. Lin, Influence of SiC Sludge on the Microstructure of Geopolymers. Materials 13, 2203 (2020). https://doi.org/10.3390/ma1309....
 
16.
R. Gailitis, A. Sprince, T. Kozlovskis, L. Radina, L. Pakrastins, N. Vatin, Long-term properties of different fiber reinforcement effect on fly ash-based geopolymer composite. Crystals. 11, 1–8 (2021). https://doi.org/10.3390/cryst1....
 
17.
J. Marczyk, C. Ziejewska, K. Korniejenko, M. Łach, W. Marzec, M. Góra, P. Dziura, A. Sprince, M. Szechyńska-Hebda, M. Hebda, Properties of 3D Printed Concrete–Geopolymer Hybrids Reinforced with Aramid Roving. Materials 15, 6132 (2022). https://doi.org/10.3390/ma1517....
 
18.
B. Kozub, P. Bazan, D. Mierzwiński, K. Korniejenko, Fly-Ash-Based Geopolymers Reinforced by Melamine Fibers. Materials 14, 400 (2021). https://doi.org/10.3390/ma1402....
 
19.
B. Nematollahi, M. Xia, J. Sanjayan, P. Vijay, Effect of Type of Fiber on Inter-Layer Bond and Flexural Strengths of Extrusion-Based 3D Printed Geopolymer. Mater. Sci. Forum 939, 155–162 (2018). https://doi.org/10.4028/www.sc....
 
20.
B. Figiela, K. Korniejenko, M. Hebdowska‐Krupa, Influence of elevated temperatures on the mechanical properties of foamed geopolymer materials. Materwiss. Werksttech. 54, 466–473 (2023). https://doi.org/10.1002/mawe.2....
 
21.
G. Masi, W.D.A. Rickard, L. Vickers, M.C. Bignozzi, A. van Riessen, A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 40, 13891–13902 (2014). https://doi.org/10.1016/j.cera....
 
22.
M. Strozi Cilla, M. Raymundo Morelli, P. Colombo, Effect of process parameters on the physical properties of porous geopolymers obtained by gelcasting. Ceram. Int. 40, 13585–13590 (2014). https://doi.org/10.1016/j.cera....
 
23.
A. Boros, T. Korim, Development of Geopolymer Foams for Multifunctional Applications. Crystals. 12, 386 (2022). https://doi.org/10.3390/cryst1....
 
24.
K. Korniejenko, K. Pławecka, P.Bazan, B.Figiela, B. Kozub, K. Mróz, M. Łach, Green Building Materials for Circular Economy - Geopolymer Foams. Proc. Eng. Technol. Innov. 25, 26–34 (2023). https://doi.org/10.46604/peti.....
 
25.
A. Hajimohammadi, T. Ngo, P. Mendis, T. Nguyen, A. Kashani, J.S.J. van Deventer, Pore characteristics in one-part mix geopolymers foamed by H2O2 : The impact of mix design. Mater. Des. 130, 381–391 (2017). https://doi.org/10.1016/j.matd....
 
26.
V. Kočí, R. Cerný, Directly foamed geopolymers : A review of recent studies. Cem. Concr. Compos. 130, 104530 (2022). https://doi.org/10.1016/j.cemc....
 
27.
D. Kioupis, A. Zisimopoulou, S. Tsivilis, G. Kakali, Development of porous geopolymers foamed by aluminum and zinc powders. Ceram. Int. 47, 26280–26292 (2021). https://doi.org/https://doi.or....
 
28.
M. Sitarz, B. Figiela, M. Łach, K. Korniejenko, K. Mróz, J. Castro-Gomes, I. Hager, Mechanical Response of Geopolymer Foams to Heating—Managing Coal Gangue in Fire-Resistant Materials Technology. Energies. 15, 3363 (2022). https://doi.org/https://doi.or....
 
29.
W.D.A. Rickard, A. van Riessen, Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire. Cem. Concr. Compos. 48, 75–82 (2014). https://doi.org/10.1016/j.cemc....
 
30.
S.K. Miltiadis, I. Giannopoulou, M.F.M. Tahir, M.F.A. Hashim, D. Panias, Upgrading Copper Slags to Added Value Fire Resistant Geopolymers. Waste and Biomass Valorization. 11, 3811–3820 (2020). https://doi.org/10.1007/s12649....
 
31.
V.S. Le, V.V. Nguyen, A. Sharko, R. Ercoli, T.X. Nguyen, D.H. Tran, P. Łoś, K.E. Buczkowska, S. Mitura, T. Špirek, P. Louda, Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards. Polymers 14, 1945 (2022). https://doi.org/10.3390/polym1....
 
32.
K. Mróz, I. Hager, Evaluation of nature and intensity of fire concrete spalling by frequency analysis of sound records. Cem. Concr. Res. 148, 22–25 (2021). https://doi.org/10.1016/j.cemc....
 
33.
K. Mróz, I. Hager, Causes and mechanism of concrete spalling under high temperature caused by fire. Cem. Wapno Beton 22(6) 445-456 (2017).
 
34.
B. Figiela, K. Korniejenko, A. Bulut, B. Şahin, G. Azizağaoğlu, K. Pławecka, B. Kozub, Influence of the Size of Milled Coal Gangue Particles on the Mechanical Properties of Geopolymers, in: 10th MATBUD'2023 Sci. Conf., MDPI, Basel Switzerland, 2023: p. 4. https://doi.org/10.3390/materp....
 
35.
K. Korniejenko, B. Figiela, B. Kozub, B. Azzopardi, M. Łach, Environmental degradation of foamed geopolymers. Contin. Mech. Thermodyn. (2022). https://doi.org/10.1007/s00161....
 
36.
P. Pimienta, R. McNamee, I. Hager, K. Mróz, L. Boström, S. Mohaine, S.-S. Huang, J.-C. Mindeguia, F. Robert, C. Davie, R. Felicetti, M.J. Miah, M. Lion, F. Lo Monte, M. Ozawa, I. Rickard, K. Sideris, M.C. Alonso, A. Millard, U.-M. Jumppanen, L. Bodnarova, J. Bosnjak, S. Dal Pont, V. Dao, D. Dauti, F. Dehn, R. Hela, T. Hozjan, M. Juknat, J. Kirnbauer, J. Kolsek, M. Korzen, H. Lakhani, C. Maluk, F. Meftah, B. Moreau, F. Pesavento, D.T. Pham, K. Pistol, J.P. Correia Rodrigues, M. Roosefid, M. Schneider, U.K. Sharma, L. Stelzner, B. Weber, F. Weise, Recommendation of RILEM TC 256-SPF on the method of testing concrete spalling due to fire: material screening test. Mater. Struct. 56, 164, (2023). https://doi.org/10.1617/s11527....
 
37.
K. Mróz, I. Hager, Experimental setup for assessment of concrete susceptibility to fire spalling. in: I. Hager (Ed.), Build. Mater. Eng. – New Mater. Test. Methods, Wydawnictwo PK, Kraków, 2021: pp. 7–16.
 
38.
ISO 834-1:1999, Fire-resistance tests — Elements of building construction — Part 1: General requirements, 1999.
 
39.
PN-EN 13501-2:2016-07, Fire classification of construction products and building elements - Part 2: Classification using data from fire resistance tests, excluding ventilation services - polish version, 2017.
 
40.
PN-EN 196-1:2016-07, Test methods for cement - Part 1: Determination of strength. polish version, https://sklep.pkn.pl/pn-en-196....
 
41.
J. Davidovits, 30 Years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. in: Geopolymer 2002 Conf., Melbourne, Australia.
 
42.
R. Kumar, H. Miyaoka, K. Shinzato, T. Ichikawa, Analysis of sodium generation by sodium oxide decomposition on corrosion resistance materials: a new approach towards sodium redox water-splitting cycle. RSC Adv. 11, 21017–21022 (2021). https://doi.org/10.1039/D1RA02....
 
43.
E. Obonyo, E. Kamseu, P. Lemougna, A. Tchamba, U. Melo, C. Leonelli, A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials. Sustainability. 6, 5535–5553 (2014). https://doi.org/10.3390/su6095....
 
44.
P. Rovnaník, K. Šafránková, Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials 9, 535 (2016). https://doi.org/10.3390/ma9070....
 
45.
W. G. Valencia Saavedra, R. Mejía de Gutiérrez, Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures. Construction and Building Materials, 154, 2017, pp. 229-235, https://doi.org/10.1016/j.conb....
 
ISSN:1425-8129
Journals System - logo
Scroll to top