Extending the use of ternary cementitious system in rapid repair engineering through the incorporation of fly ash
More details
Hide details
1
School of Materials Science and Engineering, Henan Polytechnic Univ., Henan, Jiaozuo 454000, China
Submission date: 2023-03-02
Final revision date: 2023-04-11
Acceptance date: 2025-02-02
Publication date: 2025-02-05
Cement Wapno Beton 29(4) 324-342 (2024)
KEYWORDS
TOPICS
ABSTRACT
This paper investigates the effect of fly ash [FA] on the hydration and strength development of composite cement pastes with ternary cementitious systems [OPC-CSA-CŠ]. The fluidity, setting time, swelling rate, and compressive strength of cement pastes with 0 %, 5 %, 10 %, 15 % and 20 % [mass fraction] fly ash substituted for OPC cement were tested. The hydration process, hardening, and microstructure of the cement slurry were analyzed by hydration heat, XRD, TG-DTG, SEM, and MIP test techniques. The results showed that with increasing FA content, the flowability of cement slurry improved, the setting time was shortened first and then lengthened, and the doping of FA can inhibit the shrinkage of the volume of the cementitious system at the later stage. When the FA content was 10 %, the flowability increased by 9.6 %, and the initial and final setting times were shortened by 23.4 % and 12.1 %, respectively. Simultaneously, the nucleation effect of FA provides a precipitation surface for Ca(OH)2 and C-S-H, which spreads the generated hydration products, accelerating the early hydration reaction rate and generating more AFt, improved its compressive strength. At the later stage of hydration, the micro-filler effect of FA made the unhydrated particles cut the large pores in the cement pore space into small interconnected pores, which improves the overall compactness of the slurry. The above results further develop the utilization value of FA and effectively expand the application of the ternary cementitious system in rapid repair engineering.
REFERENCES (60)
1.
T. Huang, B. Li, Q. Yuan, Z. Shi, Y. Xie, C. Shi, Rheological behavior of Portland clinker-calcium sulphoaluminate clinker-anhydrite ternary blend. Cem. Concr. Comp. 104, 103403 (2019). 10.1016/j.cemconcomp.2019.103403.
2.
D. Jacques, Q.T. Phung, J. Perko, S.C. Seetharam, N. Maes, S. Liu, L. Yu, B. Rogiers, E. Laloy, Towards a scientific-based assessment of long-term durability and performance of cementitious materials for radioactive waste conditioning and disposal. J. Nucl. Mater. 557, 153201 (2021).
https://doi.org/10.1016/j.jnuc....
3.
I. Mehdipour, K.H. Khayat, Enhancing the performance of calcium sulfoaluminate blended cements with shrinkage reducing admixture or lightweight sand. Cem. Concr. Comp. 87, 29-43 (2018).
https://doi.org/10.1016/j.cemc....
4.
S. Nie, Q. Zhang, M. Lan, J. Zhou, M. Xu, H. Li, J. Wang, Fundamental design of low-carbon ordinary Portland cement-calcium sulfoaluminate clinker-anhydrite blended system. Cem. Concr. Comp. 139, 105053 (2023).
https://doi.org/10.1016/j.cemc....
5.
B. Zhang, J. Kang, J. Li, J. Liang, J. Wang, Evaluation of interface rapid bond strength between normal concrete and ternary system fast setting and rapid hardening self-compacting concrete. Constr. Build. Mater. 347, 128515 (2022).
https://doi.org/10.1016/j.conb....
6.
H. Feng, S. Nie, A. Guo, L. Lv, J. Yu, Evaluation on the performance of magnesium phosphate cement-based engineered cementitious composites (MPC-ECC) with blended fly ash/silica fume. Constr. Build. Mater. 341, 127861 (2022).
https://doi.org/10.1016/j.conb....
7.
L.F. Jochem, C.A. Casagrande, M.B. Bizinotto, D. Aponte, J.C. Rocha, Study of the solidification/stabilization process in a mortar with lightweight aggregate or recycled aggregate. J. Clean. Prod. 326, 129415 (2021).
https://doi.org/10.1016/j.jcle....
8.
A. Singh, P.K. Mehta, R. Kumar, Strength and microstructure analysis of sustainable self-compacting concrete with fly ash, silica fume, and recycled minerals. Mater. Today Proc. 78, 86-98 (2023).
https://doi.org/10.1016/j.matp....
9.
Z. Kubba, G. Fahim Huseien, A.R.M. Sam, K.W. Shah, M.A. Asaad, M. Ismail, M.M. Tahir, J. Mirza, Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars, Case Stud. Constr. Mater. 9, e00205 (2018).
https://doi.org/10.1016/j.cscm....
10.
A. Faheem, S.A. Rizwan, T.A. Bier, Properties of self-compacting mortars using blends of limestone powder, fly ash, and zeolite powder, Construction and Building Materials 286, 122788 (2021).
https://doi.org/10.1016/j.conb....
11.
N. Khalil, G. Aouad, K. El Cheikh, S. Rémond, Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr. Build. Mater. 157, 382-391 (2017) 382-391.
https://doi.org/10.1016/j.conb....
12.
W. Shen, L. Cao, Q. Li, W. Zhang, G. Wang, C. Li, Quantifying CO2 emissions from China’s cement industry. Renew. Sust. Ener. Rev. 50, 1004-1012 (2015).
https://doi.org/10.1016/j.rser....
13.
C. Feng, B. Cui, Y. Huang, H. Guo, W. Zhang, J. Zhu, Enhancement technologies of recycled aggregate – Enhancement mechanism, influencing factors, improvement effects, technical difficulties, life cycle assessment. Constr. Build. Mater. 317, 126168 (2022).
https://doi.org/10.1016/j.conb....
14.
A. Rungchet, C.S. Poon, P. Chindaprasirt, K. Pimraksa, Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: Comparative studies between lignite fly ash and bottom ash. Cem. Concr. Comp. 83, 10-19 (2017).
https://doi.org/10.1016/j.cemc....
15.
D. Wang, C. Shi, N. Farzadnia, H. Jia, R. Zeng, Y. Wu, L. Lao, A quantitative study on physical and chemical effects of limestone powder on properties of cement pastes. Constr. Build. Mater. 204, 58-69 (2019) 58-69.
https://doi.org/10.1016/j.conb....
16.
D. Wang, C. Shi, N. Farzadnia, Z. Shi, H. Jia, Z. Ou, A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 181, 659-672 (2018) 659-672.
https://doi.org/10.1016/j.conb....
17.
L. Pelletier-Chaignat, F. Winnefeld, B. Lothenbach, C.J. Müller, Beneficial use of limestone filler with calcium sulphoaluminate cement. Constr. Build. Mater. 26(1), 619-627 (2012).
https://doi.org/10.1016/j.conb....
18.
L.H.J. Martin, F. Winnefeld, C.J. Müller, B. Lothenbach, Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cem. Concr. Comp. 62, 204-211 (2015) 204-211.
https://doi.org/10.1016/j.cemc....
19.
X. Cai, D. Yang, D. Zhang, J. Cui, W. Wang, L. Liu, Development of high-early-strength low-carbon engineered cementitious composites with calcium sulfoaluminate cement incorporating high-volume fly ash. Case Stud. Constr. Mater. 18, e01959 (2023).
https://doi.org/10.1016/j.cscm....
20.
H. Li, Y. Liu, K. Yang, C. Liu, X. Guan, S. Liu, G. Jing, Effects of synthetic CSH-tartaric acid nanocomposites on the properties of ordinary Portland cement. Cem. Concr. Comp. 129, 104466 (2022).
https://doi.org/10.1016/j.cemc....
21.
B. Ma, X. Li, X. Shen, Y. Mao, H. Huang, Enhancing the addition of fly ash from thermal power plants in activated high belite sulfoaluminate cement. Constr. Build. Mater. 52, 261-266 (2014).
https://doi.org/10.1016/j.conb....
22.
A. Schöler, B. Lothenbach, F. Winnefeld, M. Zajac, Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr. Comp. 55, 374-382 (2015).
https://doi.org/10.1016/j.cemc....
23.
P. Chaunsali, P. Mondal, Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion. Cem. Concr. Res. 80, 10-20 (2016).
https://doi.org/10.1016/j.cemc....
24.
Z. He, H. Yang, S. Hu, M. Liu, Hydration mechanism of silica fume-sulphoaluminate cement. Journal of Wuhan University of Technology-Mater. Sci. Ed. 28(6) (2013) 1128-1133.
25.
Y. Zhu, B. Ma, X. Li, D. Hu, Ultra high early strength self-compacting mortar based on sulfoaluminate cement and silica fume, Journal of Wuhan University of Technology-Mater. Sci. Ed. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 973–979 (2013).
https://doi.org/10.1007/s11595....
26.
D. Gao, Y. Meng, L. Yang, J. Tang, M. Lv, Effect of ground granulated blast furnace slag on the properties of calcium sulfoaluminate cement. Constr. Build. Mater. 227, 116665 (2019).
https://doi.org/10.1016/j.conb....
27.
Y. Shen, S. Liu, Y. Wang, P. Shen, D. Xuan, X. Guan, C. Shi, Hydration-hardening properties of low-clinker composite cement incorporating carbonated waste sintering red mud and metakaolin. Constr. Build. Mater. 354, 129171 (2022).
https://doi.org/10.1016/j.conb....
28.
S. Liu, Y. Shen, Y. Wang, P. Shen, D. Xuan, X. Guan, C. Shi, Upcycling sintering red mud waste for novel superfine composite mineral admixture and CO2 sequestration. Cem. Concr. Comp. 129, 104497 (2022).
https://doi.org/10.1016/j.cemc....
29.
N. Wang, X. Sun, Q. Zhao, Y. Yang, P. Wang, Leachability and adverse effects of coal fly ash: A review. J. Hazard. Mater. 396, 122725 (2020).
https://doi.org/10.1016/j.jhaz....
30.
W.C. Wang, Effects of fly ash and lithium compounds on the water-soluble alkali and lithium content of cement specimens. Constr. Build. Mater. 50, 727-735 (2014).
https://doi.org/10.1016/j.conb....
31.
W.-T. Kuo, C.-C. Liu, J.-Y. Wang, Evaluation of the sulfate resistance of fly ash and slag concrete by using modified ACMT. Constr. Build. Mater. 49, 40-45 (2013).
https://doi.org/10.1016/j.conb....
32.
S. Kandasamy, M.H. Shehata, Durability of ternary blends containing high calcium fly ash and slag against sodium sulphate attack. Constr. Build. Mater. 53, 267-272 (2014).
https://doi.org/10.1016/j.conb....
33.
L. Jin, M. Chen, Y. Wang, Y. Peng, Q. Yao, J. Ding, B. Ma, S. Lu, Utilization of mechanochemically pretreated municipal solid waste incineration fly ash for supplementary cementitious material. J. Environ. Chem. Eng. 11(1), 109112 (2023).
https://doi.org/10.1016/j.jece....
34.
D. Zheng, D. Wang, H. Cui, X. Chen, Hydration characteristics of cement with high volume circulating fluidized bed fly ash. Constr. Build. Mater. 380, 131310 (2023).
https://doi.org/10.1016/j.conb....
35.
X. Han, J. Feng, B. Wang, Relationship between fractal feature and compressive strength of fly ash-cement composite cementitious materials. Cem. Concr. Comp. 139, 105052 (2023).
https://doi.org/10.1016/j.cemc....
36.
P. He, J. Yu, L. Xue, X. Han, Influence of ion chelator on pore structure, water transport and crack-healing properties of cement pastes incorporating high-volume fly ash and blast-furnace slag. J. Build. Eng. 55, 104696 (2022).
https://doi.org/10.1016/j.jobe....
37.
X. Ma, T. He, Y. Xu, Y. Da, H. Wang, R. Yang, Properties of composite sintered modified fluidized bed incineration fly ash as cement admixture. Constr. Build. Mater. 378, 131210 (2023).
https://doi.org/10.1016/j.conb....
38.
Q. Zeng, K. Li, T. Fen-chong, P. Dangla, Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem. Concr. Res. 42(1) 194-204 (2012).
https://doi.org/10.1016/j.cemc....
39.
S.K. Behera, D.P. Mishra, P. Singh, K. Mishra, S.K. Mandal, C.N. Ghosh, R. Kumar, P.K. Mandal, Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective. Constr. Build. Mater. 309, 125120 (2021).
https://doi.org/10.1016/j.conb....
40.
D. Ndahirwa, H. Zmamou, H. Lenormand, N. Leblanc, The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review. Clean. Mater. 5, 100123 (2022).
https://doi.org/10.1016/j.clem....
41.
P.C.R.A. Abrão, F.A. Cardoso, V.M. John, Efficiency of Portland-pozzolana cements: Water demand, chemical reactivity and environmental impact. Constr. Build. Mater. 247, 118546 (2020).
https://doi.org/10.1016/j.conb....
42.
J. Wang, H. Dong, PVA fiber-reinforced ultrafine fly ash concrete: Engineering properties, resistance to chloride ion penetration, and microstructure. J. Build. Eng. 66, 105858 (2023).
https://doi.org/10.1016/j.jobe....
43.
L.H.J. Martin, F. Winnefeld, E. Tschopp, C.J. Müller, B. Lothenbach, Influence of fly ash on the hydration of calcium sulfoaluminate cement. Cem. Concr. Res. 95, 152-163 (2017).
https://doi.org/10.1016/j.cemc....
44.
F. Deschner, F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, F. Goetz-Neunhoeffer, J. Neubauer, Hydration of Portland cement with high replacement by siliceous fly ash. Cem. Concr. Res. 42(10), 1389-1400 (2012).
https://doi.org/10.1016/j.cemc....
45.
K. Chalah, M.h. Mahdad, A. Benmounah, R. Kheribet, A. Akouche, Effect of silica fume on cement rheology properties in presence of superplasticisers. Mater. Today Proc. 58, 1246-1250 (2022).
https://doi.org/10.1016/j.matp....
46.
L. Xu, P. Wang, G. Zhang, Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures. Constr. Build. Mater. 31, 347-352 (2012).
https://doi.org/10.1016/j.conb....
47.
G.Y. Koga, B. Albert, R.P. Nogueira, On the hydration of Belite-Ye'elimite-Ferrite (BYF) cement pastes: Effect of the water-to-cement ratio and presence of fly ash. Cem. Concr. Res. 137, 106215 (2020).
https://doi.org/10.1016/j.cemc....
49.
L. Li, J. Yang, H. Li, Y. Du, Insights into the microstructure evolution of slag, fly ash and condensed silica fume in blended cement paste. Constr. Build. Mater. 309, 125044 (2021).
https://doi.org/10.1016/j.conb....
50.
Y. Wang, J. Jia, Q. Cao, X. Gao, Effect of calcium formate on the compressive strength, and hydration process of cement composite containing fly ash and slag. J. Build. Eng. 50, 104133 (2022).
https://doi.org/10.1016/j.jobe....
51.
S. Liu, Y. Shen, Y. Wang, H. He, S. Luo, C. Huang, Synergistic use of sodium bicarbonate and aluminum sulfate to enhance the hydration and hardening properties of Portland cement paste. Constr. Build. Mater. 299, 124248 (2021).
https://doi.org/10.1016/j.conb....
52.
Y. Teng, S. Liu, Z. Zhang, J. Xue, X. Guan, Effect of triethanolamine on the chloride binding capacity of cement paste with a high volume of fly ash. Constr.Build. Mater. 315, 125612 (2022).
https://doi.org/10.1016/j.conb....
53.
C.W. Hargis, A.P. Kirchheim, P.J.M. Monteiro, E.M. Gartner, Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide. Cem. Concr. Res. 48, 105-115 (2013) 105-115.
https://doi.org/10.1016/j.cemc....
54.
R. Trauchessec, J.M. Mechling, A. Lecomte, A. Roux, B. Le Rolland, Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends, Cem. Concr. Comp. 56, 106-114 (2015).
https://doi.org/10.1016/j.cemc....
55.
Z. Sun, X. Tan, W. Chen, R. Mu, Chemical shrinkage of ferrite-rich calcium sulfoaluminate clinkers with varied gypsum contents. Constr. Build. Mater. 357, 128729 (2022).
https://doi.org/10.1016/j.conb....
56.
E. Khankhaje, T. Kim, H. Jang, C.-S. Kim, J. Kim, M. Rafieizonooz, Properties of pervious concrete incorporating fly ash as partial replacement of cement: A review. Develop. Built Environ. 14, 100130 (2023).
https://doi.org/10.1016/j.dibe....
57.
Y. Kocak, S. Nas, The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater. 73, 25-32 (2014).
https://doi.org/10.1016/j.conb....
58.
O. Linderoth, P. Johansson, L. Wadsö, Development of pore structure, moisture sorption and transport properties in fly ash blended cement-based materials. Constr. Build. Mater. 261, 120007 (2020).
https://doi.org/10.1016/j.conb....