Estimation of Mec hanical Properties of Limestone Using Regression Analyses and ANN
 
More details
Hide details
1
Civil Engineering Department, Dokuz Eylul University, Izmir, Turkey
 
2
Civil Engineering Department, Izmir Institute of Technology, Izmir, Turkey
 
 
Publication date: 2012-11-01
 
 
Cement Wapno Beton 17(6) 373-389 (2012)
 
ACKNOWLEDGEMENTS
We would like to thank The Scientifi c and Technical Research Council of Turkey (TUBITAK), for funding of the project ICTAG I-591.
REFERENCES (42)
1.
G. Croci, The Conservation and Structutal Restoration of Architectural Heritage. Computational Mechanics Publications, Boston, USA, (1998).
 
2.
Ö. Eren, M. Bahali, Some engineering properties of natural building cut stones of Cyprus. Constr. Build. Mater., Vol.19, 213-222 (2005).
 
3.
R. Ulusay, K. Tureli, M.H. Ider, Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, Vol.37, 135-157 (1994).
 
4.
H. Sonmez, C. Gokceoglu, R. Ulusay, An application of fuzzy sets to the Geological Strength Index (GSI) System used in rock engineering. Engineering Applications of Artifi cial Intelligence, Vol. 16, No. 3, 251-269 (2003).
 
5.
F. Pohle, W. Jager, Material properties of historical masonry of the Frauenkirche and the masonry guideline for reconstruction. Constr. Build. Mater. Vol.17, 651-667 (2003).
 
6.
B. Tutmez, S. Kahraman, O. Gunaydın, Multifactorial fuzzy approach to the sawability classifi cation of building stones. Constr. Build. Mater. Vol.21, 1672–1679 (2007).
 
7.
N. Yılmaz, Z. Karaca, R. Goktan, C. Akal, C , Relative brittleness characterization of some selected granitic building stones: Infl uence of mineral grain size. Constr. Build. Mater. Vol.23, 370-375 (2009).
 
8.
L. Binda, A. Saisi, C. Tiraboschi, Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. Vol.14, No. 4, 199-233 (2000).
 
9.
L. Schueremans, K.V. Balen, K. Brosens, D.V. Gemert, P. Smars, The Church of Saint James at Leuven: Structural assessment and consolidation measures. Int. J. Archit. Herit. Vol.1, 82-107, (2007).
 
10.
European Committee for Standardization, Eurocode 6: Design of Masonry Structures, Brussels (1996).
 
11.
C.I. Sachpazis, Correlating Schmidt Hardness with Compressive Strength and Young’s Modulus of Carbonate Rocks. Bull. Int. Assoc. Eng. Geol., Vol.42, 75-83 (1990).
 
12.
E. Yasar, Y. Erdogan, Estimation of rock physicomechanical properties using hardness methods. Eng. Geol. Vol.71, 281–288 (2004).
 
13.
S. Kahraman, Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. of Rock Mech. & Min. Sci., Vol. 38, 981–994 (2001).
 
14.
J.E. O’Rourke, Rock index properties for geoengineering in underground development. Min. Eng. 106-110 (1989).
 
15.
I. Cobanoglu, S.B. Celik Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull. Eng. Geol. Environ. Vol.67, 491-498 (2008).
 
16.
S. Yagiz, Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. Vol. 68, 55–63, (2009).
 
17.
A. Aydın, A. Basu, The Schmidt hammer in rock material characterization. Eng. Geol., Vol.81, 1-14 (2005).
 
18.
I. Yılmaz, H. Sendir, Correlation of Schmidt hardness with unconfi ned compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng. Geol. Vol.66, 211– 219 (2002).
 
19.
A. Tugrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. Vol. 51, 303–317 (1999).
 
20.
O. Katz, Z. Reches, J.C. Roegiers, Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci., Vol. 37, 723–728 (2000).
 
21.
E. Teomete, E. Aktaş, Structural Analyses and Assessment of Historical Kamanlı Mosque in Izmir, Turkey. J. Performance of Constructed Facilities, ASCE, Vol. 24, No.4, 353-364 (2010).
 
22.
 
23.
 
24.
H. Halikarnasus, The Histories, Trans. Aubrey de Selincourt, Baltimore, Penguin Books , ISBN: 0140440348, 1973.
 
25.
F. Erim, Turkish Era Structures in Urla -1. Ege University Graduation Thesis, Izmir, Turkey (1995).
 
26.
ISRM (International Society for Rock Mechanics). Rock Characterization, Testing and Monitoring: ISRM Suggested Methods. ed. E.T. Brown, Pergamon Press, Oxford (1981).
 
27.
RILEM Commission 25 PEM, Tests defi ning the structure. Mater. Constr. Vol. 13, No.75, 177-181 (1980).
 
28.
L. Fausett, Fundamental of Neural Networks; Architectures, Algorithm and Application, Prentice Hall International Editions, New York (1994).
 
29.
C. Gokceoglu, E. Yesilnacar, H. Sonmez, A. Kayabasi, A neuro-fuzzy model for modulus of deformation of jointed rock masses. Computers and Geotechnics, Vol. 31, 375–383 (2004).
 
30.
F. Meulenkamp, G.M. Alvarez, Application of neural networks for the prediction of the unconfi ned compressive strength (UCS) from Equotip hardness. International Journal of Rock Mechanics and Mining Sciences, Vol.36, No.1, 29–39 (1999).
 
31.
V.K. Singh, D. Singh, T.N. Singh, Prediction of strength properties of some schistose rocks from petrographic properties using artifi cial neural Networks. International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No.2, 269–284 (2001).
 
32.
T.N. Singh, S. Sinha, V.K. Singh, Prediction of thermal conductivity of rock through physico-mechanical properties. Building and Environment, Vol.42, No.1, 146–155 (2007).
 
33.
H. Sonmez, C. Gokceoglu, H.A. Nefeslioglu, A., Kayabasi, Estimation of rock modulus: For intact rock with an artifi cial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences, Vol. 43, 224–235 (2006).
 
34.
K. Zorlu, C. Gokceoglu, F. Ocakoglu, H.A. Nefeslioglu, S. Acikalin, Prediction of uniaxial compressive strength of sandstones using petrographybased models. Engineering Geology, Vol. 96, 141–158 (2008).
 
35.
S. Yagız, C. Gokceoglu, E. Sezer, S. Iplikci, Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Engineering Applications of Artifi cial Intelligence, Vol. 22, 808–814 (2009).
 
36.
ASCE Task Committee, Artifi cial neural networks in hydrology, II: Hydrologic applications. J. Hydrologic Eng., Vol.5, No.2, 124–137 (2000).
 
37.
G. Tayfur, D. Swiatek, A. Wita, P, Singh, A.K. Barton, Case Study: Finite Element Method and Artifi cial Neural Network Models for Flow through Jeziorsko Earthfi ll Dam in Poland. Journal of Hydraulic Engineering-ASCE, Vol. 131, No. 6, 431-440 (2005).
 
38.
M. Negnevitsky, Artifi cial Intelligence: A Guide to Intelligent Systems, Addison-Wesley, England (2002).
 
39.
M.H. Hassoun, Fundamentals of Artifi cial Neural Networks, MIT Press, Cambridge, MA (1995).
 
40.
C.W. Dawson, R. Wilby, An artifi cial neural network approach to rainfallrunoff modelling. Hydrological Sciences journal 43 (1), 47–66 (1998).
 
41.
S. Haykin, Neural Networks a Comprehensive Foundation, MacMillan, New York (1994).
 
42.
T. Munakata, Fundamentals of the New Artifi cial Intelligence: Beyond Traditional Paradigms, Springer-Verlag, New York (1998).
 
ISSN:1425-8129
Journals System - logo
Scroll to top