Effect of PVA fiber dosage on fresh and engineering characteristics of alkali activated slag-fly ash concrete cured under room temperature
 
More details
Hide details
1
Department of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India
 
 
Submission date: 2023-03-25
 
 
Final revision date: 2023-06-26
 
 
Acceptance date: 2025-04-07
 
 
Publication date: 2025-04-16
 
 
Corresponding author
Venkateswarlu Mangalapuri   

Research Scholar, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India. Email: mv718113@student.nitw.ac.in, 506004, warangal, India
 
 
Cement Wapno Beton 29(5) 409-428 (2024)
 
KEYWORDS
TOPICS
ABSTRACT
This paper examines the effect of polyvinyl alcohol [PVA] fibres on the fresh and engineering characteristics of alkali-activated slag-fly ash concrete [AASFC] that has been cured under ambient conditions. In this paper, 40 MPa grade of concrete was developed using 100% ground-granulated blast furnace slag [GGBFS], GGBFS was replaced with 0 %, 20 %, 40 %, 60 %, 80 %, and 100 % fly ash. PVA fibres were incorporated into all mixtures in the following percentages: 0.00 %, 0.15 %, 0.30 %, 0.45 %, and 0.60 %. Fresh properties workability [slump flow] and mechanical properties such as compressive strength, split tensile strength, flexural strength, stress-strain relation, peak stress, strain at peak stress, modulus of elasticity [MOE], and energy absorption capacity [EAC] were studied. A correlation was established between the compressive, split tensile, and flexural strengths of all mixes, and the resulting relationships were compared to previous studies and code requirements. According to the test results, the workability of mixes increased as the fly ash content increased but decreased as the fibre content increased in all mixes. Mechanical properties enhanced as PVA fibre content increased from 0.15 % to 0.30 %, while they decreased at 0.45 % and 0.60 %. From the overall results, the best mechanical properties were obtained in all mixtures at 0.30 % PVA fibres.
REFERENCES (60)
1.
P. Duxson, J.L. Provis, G.C. Lukey, J.S. Van Deventer, The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 37(12), 1590-1597 (2007). https://doi.org/10.1016/j.cemc....
 
2.
N. Ganesan, P.V. Indira, Engineering properties of steel fibre reinforced geopolymer concrete. Adv. Concr. Constr. 1(4), 305 (2013). https://doi.org/10.12989/acc20....
 
3.
N.K. Lee, H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 47, 1201-1209 (2013). https://doi.org/10.1016/j.conb....
 
4.
G. Fang, W.K. Ho, W. Tu, M. Zhang, Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 172, 476-487 (2018). https://doi.org/10.1016/j.conb....
 
5.
J.A. Fernandez, A. Palomo, H. Lopez, Engineering properties of alkali activated fly ash concrete. ACI Mater. J. 103(2),106-112 (2006). https://doi.org/10.14359/15261.
 
6.
S.A. Bernal, R.M. de Gutiérrez, A.L. Pedraza, J.L. Provis, E.D. Rodriguez, S. Delvasto, Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41(1), 1-8 (2011). https://doi.org/10.1016/j.cemc....
 
7.
K. Neupane, Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of Portland cement in concrete industry. Mech. Mater. 103, 110-122 (2016). https://doi.org/10.1016/j.mech....
 
8.
M. Venu, T.G. Rao, An experimental investigation of the stress-strain behaviour of geopolymer concrete. Slovak J. Civ. Eng. 26(2), 30-34 (2018). https://doi.org/10.2478/sjce-2....
 
9.
A. Bentur, S. Mindess, Fibre reinforced cementitious composites. CRC Press, 2006.
 
10.
F. Bencardino, L. Rizzuti, G. Spadea, R.N. Swamy, Stress-strain behavior of steel fibre reinforced concrete in compression. J. Mater. Civil Eng. 20(3), 255-263 (2008). https://doi.org/10.1061/(ASCE)...).
 
11.
ACI Committee 544, State of the art report of fibre reinforced concrete. Concr. Int. Des. Constr. 4(5), 9-30 (1982).
 
12.
A.E. Naaman, Fibre reinforcement for concrete. Concr. Int.: Des. Constr. 7(3), 21-25 (1985).
 
13.
ACI Committee 544 State-Of-The-Art Report on Fiber Reinforced Concrete. Farmington Hills, MI, USA: American Concrete Institute, 1996.
 
14.
E.G. Nawy, Concrete construction engineering handbook. CRC Press, 2008.
 
15.
T. Lin, D. Jia, P. He, M. Wang, In situ crack growth observation and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater. Sci. Eng. A, 527(9), 2404-2407 (2009). https://doi.org/10.1016/j.msea....
 
16.
F.F. Wafa, S.A. Ashour, Mechanical properties of high- strength fibre reinforced concrete. ACI Mater. J., 89(5), 449-455 (1992). https://doi.org/10.14359/2390.
 
17.
L. Sun, Q. Hao, J. Zhao, D. Wu, F. Yan, Stress strain behavior of hybrid steel-PVA fiber reinforced cementitious composites under uniaxial compression. Constr. Build. Mater. 188, 349-360 (2018). https://doi.org/10.1016/j.conb....
 
18.
S. Wang, V.C. Li, Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances. In Proc., Int’l Workshop on HPFRCC Structural Applications, Hawaii, 2005. https://doi.org/10.1617/291214....
 
19.
V.C. Li, S. Wang, C. Wu, Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). Mater. J. 98(6), 483-492 (2001). https://doi/org/10.14359/10851.
 
20.
B.Y. Lee, C.G. Cho, H.J. Lim, J.K. Song, K.H. Yang, V.C. Li, Strain hardening fiber reinforced alkali-activated mortar–a feasibility study. Constr. Build. Mater. 37, 15-20 (2012). https://doi.org/10.1016/j.conb....
 
21.
M. Ohno, V.C. Li, A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr. Build. Mater. 57, 163-168 (2014). https://doi.org/10.1016/j.conb....
 
22.
F.U.H. Shaikh, Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 50, 674-682 (2013). https://doi.org/10.1016/j.matd....
 
23.
Z. Yunsheng, S. Wei, L. Zongjin, Z. Xiangming, C. Chungkong, Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Constr. Build. Mater. 22(3), 370-383 (2008). https://doi.org/10.1016/j.conb....
 
24.
G. Masi, W.D. Rickard, M.C. Bignozzi, A. Van Riessen, The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Comp. B 76, 218-228 (2015). https://doi.org/10.1016/j.comp....
 
25.
H. Tanyildizi, Y. Yonar, Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature. Constr. Build. Mater. 126, 381-387 (2016). https://doi.org/10.1016/j.conb....
 
26.
M.M. Al-Mashhadani, O. Canpolat, Y. Aygörmez, M. Uysal, S. Erdem, Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr. Build. Mater. 167, 505-513 (2018). https://doi.org/10.1016/j.conb....
 
27.
P. Zhang, K. Wang, J. Wang, J. Guo, S. Hu, Y. Ling, Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Cer. Int. 46(12), 20027-20037 (2020). https://doi.org/10.1016/j.cera....
 
28.
IS: 12089-1987, Specification for Granulated Slag for The Manufacture of Portland Slag Cement.
 
29.
IS 3812 (Part 1) :2003, Indian Standard Pulverized Fuel Ash Specification Part 1 for use as Pozzolana in Cement, Cement Mortar and Concrete.
 
30.
IS 383, “Indian Standard Coarse and Fine Aggregate for Concrete,” Bureau of Indian Standards, (2016).
 
31.
IS 9103: 1999, Indian Standard Concrete Admixtures – Specification.
 
32.
BS 5075-1: Concrete Admixtures Part 1: Specification for Accelerating and Retarding Water-Reducing Admixtures.
 
33.
C.S. Thunuguntla, T.D. Gunneswara Rao, Appraisal on strength characteristics of alkali-activated GGBFS with low concentrations of sodium hydroxide. Iranian J. Sci. Techn. 42, 231-243 (2018). https://doi.org/10.1007/s40996....
 
34.
C.S. Thunuguntla, T.D. Gunneswara Rao, Mix design procedure for alkali-activated slag concrete using particle packing theory. J. Mater. Civ. Eng. 30(6), 04018113 (2018). https://doi.org/10.1061/(ASCE)....
 
35.
G. Mallikarjuna Rao, T. D. Gunneswara Rao, Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab. J. Sci. Eng. 40(11), 3067-3074 (2015). https://doi.org/10.1007/s13369....
 
36.
G. Fang, W.K. Ho, W. Tu, M. Zhang, Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 172, 476-487.https://doi.org/10.1016/j.conb....
 
37.
P. Nath, P.K. Sarker, Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163-171 (2014). https://doi.org/10.1016/j.conb....
 
38.
IS: 516 – 1959, Indian Standard methods of tests for strength of concrete.
 
39.
IS 5816, “Indian Standard Splitting Tensile Strength of Concrete Method of Test,” Bureau of Indian Standards, (1999).
 
40.
ASTM C-293-02, “Standard Test Method for Flexural Strength of concrete (using Simple Beam with Center-Point Loading),” International Standard Organization, (2002).
 
41.
Y. Ling, P. Zhang, J. Wang, Y. Chen, Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 229, 117068 (2019). https://doi.org/10.1016/j.conb....
 
42.
M.K. Yew, H. Bin Mahmud, B.C. Ang, M.C. Yew, Effects of low volume fraction of polyvinyl alcohol fibers on the mechanical properties of oil palm shell lightweight concrete. Adv. Mater. Sci. Eng. 2015, 425236 (2015). https://doi.org/10.1155/2015/4....
 
43.
A. Noushini, K. Vessalas, G. Arabian, B. Samali, Drying shrinkage behaviour of fibre reinforced concrete incorporating polyvinyl alcohol fibres and fly ash. Adv. Civ. Eng. 2014, 836173 (2014). https://doi.org/10.1155/2014/8....
 
44.
A. Noushini, B. Samali, K. Vessalas, Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 49, 374-383 (2013). https://doi.org/10.1016/j.conb....
 
45.
V.C. Li, A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites. Cem. Concr. Comp. 14(2), 131-141 (1992). https://doi.org/10.1016/0958-9....
 
46.
Atahan, H. N., Pekmezci, B. Y., & Tuncel, E. Y. (2013). Behavior of PVA fiber-reinforced cementitious composites under static and impact flexural effects. Journal of Materials in Civil Engineering, 25(10), 1438-1445. https://doi.org/10.1061/(ASCE)....
 
47.
Soulioti, D. V., Barkoula, N. M., Paipetis, A., & Matikas, T. E. (2011). Effects of fibre geometry and volume fraction on the flexural behaviour of steel‐fibre reinforced concrete. Strain, 47, e535-e541.https://doi.org/10.1111/j.1475....
 
48.
Mydin, M. A. O., & Soleimanzadeh, S. (2012). Effect of polypropylene fiber content on flexural strength of lightweight foamed concrete at ambient and elevated temperatures. Advances in Applied Science Research, 3(5), 2837-2846.
 
49.
ACI Committee. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute.
 
50.
P. Code, Eurocode 2: design of concrete structures-part 1–1: general rules and rules for buildings. British Standard Institution, London, 2005.
 
51.
Standards Australia 2001. Concrete Structures, AS3600-2001.
 
52.
M. Sofi, J.S.J. Van Deventer, P.A. Mendis, G.C. Lukey, Engineering properties of inorganic polymer concretes (IPCs). Cem. Concr. Res. 37(2), 251-257 (2007). https://doi.org/10.1016/j.cemc....
 
53.
E.I. Diaz-Loya, E.N. Allouche, S. Vaidya, Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108(3), 300 (2011). https://doi.org/10.14359/51682....
 
54.
P. Nath, P.K. Sarker, Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. 130, 22-31 (2017). https://doi.org/10.1016/j.conb....
 
55.
Y. Choi, R.L. Yuan, Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem. Concr. Res. 35(8), 1587-1591 (2005). https://doi.org/10.1016/j.cemc....
 
56.
B.W. Xu, H.S. Shi, Correlations among mechanical properties of steel fiber reinforced concrete. Constr. Build. Mater. 23(12), 3468-3474 (2009). https://doi.org/10.1016/j.conb....
 
57.
J. Xie, J. Wang, R. Rao, C. Wang, C. Fang, Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Comp. B 164, 179-190 (2019). https://doi.org/10.1016/j.comp....
 
58.
R.J. Thomas, S. Peethamparan, Alkali-activated concrete: Engineering properties and stress–strain behaviour. Constr. Build. Mater. 93, 49-56 (2015). https://doi.org/10.1016/j.conb....
 
59.
J.S. Lawler, T. Wilhelm, D. Zampini, S.P. Shah, Fracture processes of hybrid fiber-reinforced mortar. Mater. Struct. 36, 197-208 (2003). https://doi.org/10.1007/BF0247....
 
60.
S.G. Gök, I. Kilic, Ö. Sengül, Properties of alkali-activated roller compacted concretes produced from waste aggregates. Cem. Wapno Beton 26(4) 352-363 (2022). https://doi.org/10.32047/cwb.2....
 
ISSN:1425-8129
Journals System - logo
Scroll to top