Experimental and modeling study of strength of high strength concrete containing binary and ternary binders
 
More details
Hide details
1
Department of Civil Engineering, Izmir Institute of Technology, Izmir, Turkey
 
2
ÇimSA Cement Production and Trading Co., Mersin, Turkey
 
 
Publication date: 2011-07-01
 
 
Cement Wapno Beton 16(4) 224-237 (2011)
 
KEYWORDS
ACKNOWLEDGEMENTS
The authors would like to thank ÇimSA Cement Production and Trading Co., Mersin, Turkey for the support.
 
REFERENCES (28)
1.
Ö. Kırca, M. Şahin, T. K. Erdem, Corrosion resistance of white Portland cement: The effects of pozzolanic admixtures, in: IXth ICCP International corrosion symposium and exhibition, pp. 432-440, Ankara, Turkey 2004.
 
2.
J. T. Ding, Z. Li, Effects of metakaolin and silica fume on properties of concrete, ACI Mater J 99, pp. 393-398 (2002).
 
3.
C. S. Poon, L. Lam, S. C. Kou, Y. L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes, Cem. Concr. Res. 31, pp. 1301-1306 (2001).
 
4.
R. Şahin, R. Demirboğa, H. Uysal, R. Gül, The effects of different cement dosages, slumps and pumice aggregate ratios on the compressive strength and densities of concrete, Cem. Concr. Res. 33 (2003)1245-1249 (2003)
 
5.
D. Sarı, O. Çankıran, A. Sarışık, The optimum granulometry of the pumice aggregate at which the admixture is effective, in: Cement and Concrete Technology in the 2000’s, pp.134-143, İstanbul, Turkey 2000.
 
6.
V. M. Malhotra, A. A. Ramezanianpour, Fly ash in concrete. CANMET, Ottawa 1994.
 
7.
S. Mindess, J. F. Young, D. Darwin, Concrete, Prentice-Hall Englewood Cliffs (NJ), 2003.
 
8.
R. P. Khatri, V. Sirivivatnanon, W. Gross, Effect of different supplementary cementitious materials on mechanical properties of high performance concrete, Cem. Concr. Res. 25, pp. 209-220 (1995).
 
9.
D. M. Roy, Hydration of blended cements containing slag, fl y ash, or silica fume, in: Proceedings of meeting institute of concrete technology, Coventry, pp. 29–31, UK 1987.
 
10.
A. M. Neville, Properties of concrete, Essex: Pearson Education Asia Pte Ltd, 2000.
 
11.
P. K. Mehta, O. E. Gjørv, Properties of portland cement concrete containing fl y ash and condensed silica fume, Cem. Concr. Res. 12, pp. 587-595 (1982).
 
12.
C. Ozyildirim, W. J. Halstead, Improved concrete quality with combinations of fl y ash and silica fume, ACI Mater J 91, pp. 587-594 (1994).
 
13.
M. D. A. Thomas, M. H. Shehata, S. G. Shashiprakash, D. S. Hopkins, K. Cail, Use of ternary cementitious systems containing silica fume and fl y ash in concrete, Cem. Concr. Res. 29, pp. 1207-1214 (1999).
 
14.
D. S. Lane, C. Ozyildirim, Preventive measures for alkali-silica reactions (binary and ternary systems), Cem. Concr. Res. 29, pp. 1281-1288 (1999).
 
15.
K. Tan, X. Pu, Strengthening effects of fi nely ground fl y ash, granulated blast furnace slag, and their combination, Cem. Concr. Res. 28, pp. 1819–1825 (1998).
 
16.
G. Li, X. Zhao, Properties of concrete incorporating fl y ash and ground granulated blast-furnace slag, Cem. Concr. Comp. 25, pp. 293–299 (2003).
 
17.
L. Jianyong, T. Pei, Effect of slag and silica fume on mechanical properties of high strength concrete, Cem. Concr. Res. 27, pp. 833–837 (1997).
 
18.
M. R. Jones, R. K. Dhir, B. J. Magee, Concrete containing ternary blended binders: resistance to chloride ingress and carbonation, Cem. Concr. Res. 27, pp. 825–831 (1997).
 
19.
A. L. A. Fraay, J. M. Bijen, Y. M. de Haan, The reaction of fl y ash in concrete: a critical examination, Cem. Concr. Res. 19, pp. 235–246 (1989).
 
20.
ACI Committee 211. Guide for selecting proportions for high strength concrete with Portland cement and fl y ash, ACI Mater J 90, pp. 272–283 (1993).
 
21.
İ. B. Topçu, M. Sarıdemir, Prediction of compressive strength of concrete containing fl y ash using artifi cial neural networks and fuzzy logic, Computational Materials Science 41, pp. 305–311 (2008).
 
22.
N. Hong-Guang, W. Ji-Zong, Prediction of compressive strength of concrete by neural networks, Cem. Concr. Res. 30, pp. 1245-1250 (2000).
 
23.
A. Öztaş, M. Pala, E. Özbay, E. Kanca, N. Çağlar, M. A. Bhatti, Predicting the compressive strength and slump of high strength concrete using neural network, Constr. Build. Mater., 20, pp. 769–775 (2006).
 
24.
I. C. Yeh, Modeling of strength of high-performance concrete using artifi cial neural networks, Cem. Concr. Res. 28, pp. 1797–1808 (1998).
 
25.
W. P. S. Dias, S. P. Pooliyadda, Neural networks for predicting properties of concretes with admixtures, Constr. Build. Mater. 15, pp. 371-379 (2001).
 
26.
J. Kasperkiewicz, J. Racz, A. Dubrawski, HPC strength prediction using artifi cial neural network, ASCE J. Comput. Civil. Eng. 9, pp. 279-284 (1995).
 
27.
T. K. Erdem, Ö. Kırca, Use of binary and ternary blends in high strength concrete. Constr. Build. Mater., 22, pp. 1477-1483 (2008).
 
28.
The ASCE Task Committee on Application of Artifi cial Neural Networks in Hydrology, Artifi cial Neural Networks in Hydrology I: Preliminary Concepts, J. Hydrologic. Eng., 5, pp. 115-123 (2000).
 
ISSN:1425-8129
Journals System - logo
Scroll to top