Microstructural characterization of foamed concrete with different densities using microscopic techniques
 
More details
Hide details
1
Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
 
2
Structural Engineering Department, Mansoura University, Elgomhouria St., Mansoura City 35516, Egypt
 
 
Publication date: 2018-06-01
 
 
Cement Wapno Beton 23(3) 216-225 (2018)
 
KEYWORDS
ACKNOWLEDGEMENTS
The project is supported by the German Federal Ministry of Education and Research [BMBF, Project number: 13XP5010B and 01DR16007] and Basic Science Research Program through the National Research Foundation of Korea [NRF] funded by the Ministry of Education [2016R1A6A3A03007804]. The authors want to thank Mr. Paul H. Kamm [Helmholtz Centre Berlin] for his assistance in X-ray CT imaging
 
REFERENCES (27)
1.
P. K. Mehta, P. J. M. Monteiro, Concrete: Microstructure, Properties, and Materials (4th ed.), McGraw-Hill Education, USA, 2013.
 
2.
A. M. Neville, Properties of concrete (5th ed.), Pearson Education, England, 2012.
 
3.
S.-Y. Chung, M. A. Elrahman, P. Sikora, T. Rucinska, E. Horszczaruk, D. Stephan, Evaluation of the effects of crushed and expanded waste glass aggregates on the material properties of lightweight concrete using imagebased approaches, Materials 10 1354 (2017).
 
4.
K. Ramamurthy, E. K. Nambiar, G. Ranjani, A classifi cation of studies on properties of foam concrete, Cem. Concr. Comp. 31, 388–396 (2009).
 
5.
Y. H. Amran, N. Farzadnia, A. A. Ali, Properties and applications of foamed concrete; a review, Constr. Build. Mater. 101, 990–1005 (2015).
 
6.
K.-H. Yang, C.-W. Lo, J.-S. Huang, Production and properties of foamed reservoir sludge inorganic polymers, Constr. Build. Mater. 50, 421–431 (2014).
 
7.
A. Hilal, N. H. Thom, A. R. Dawson, On void structure and strength of foamed concrete made without/with additives, Constr. Build. Mat. 85, 157–164 (2015).
 
8.
Z. Zhang, J. L. Provis, A. Reid, H. Wang, Mechanical, thermal insulation, thermal resistance and acoustic ab- sorption properties of geopolymer foam concrete, Cem. Concr. Comp. 62, 97–105 (2015).
 
9.
A. A. Sayadi, J. V. Tapia, T. R. Neitzert, G. C. Clifton, Effects of expanded polystyrene (EPS) particles on fi re resistance, thermal conductivity and compressive strength of foamed concrete, Constr. Build. Mater. 112, 716–724 (2016).
 
10.
E. P. Kearsley, P. J. Wainwright, The effect of porosity on the strength of foamed concrete, Cem. Concr. Res. 32, 233–239 (2002).
 
11.
S. Wei, C. Yiqiang, Z. Yunsheng, M. R. Jones, Characterization and simulation of microstructure and thermal properties of foamed concrete, Constr. Build. Mater. 47, 1278–1291 (2013).
 
12.
A. A. Hilal, N. H. Thom, A. R. Dawson, On entrained pore size distribution of foamed concrete, Constr. Build. Mater. 75, 227–233 (2015).
 
13.
S. K. Lim, C. S. Tan, O. Y. Lim, Y. L. Lee, Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as fi ller, Constr. Build. Mater. 46, 39–47 (2013).
 
14.
P. Zhihua, L. Hengzhi, L. Weiqing, Preparation and characterization of super low density foamed concrete from Portland cement and admixtures, Constr. Build. Mater. 72, 256–261 (2014).
 
15.
J. Jiang, Z. Lu, Y. Niu, J. Li, Y. Zhang, Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement, Mater. Des. 92, 949–959 (2016).
 
16.
P. Stutzman, Scanning electron microscopy imaging of hydraulic cement microstructure, Cem. Concr. Comp. 26 957–066 (2004).
 
17.
B. Gael, T. Christelle, E. Gilles, G. Sandrine, S.-F. Tristan, Determination of the proportion of anhydrous cement using SEM image analysis, Constr. Build. Mater. 126, 157–164 (2016).
 
18.
B. M. Patterson, J. P. Escobedo-Diaz, D. Dennis-Koller, E. Cerreta, Dimensional quantifi cation of embedded voids or objects in three dimensions using X-ray tomography, Microsc. Microanal. 18, 390– 398 (2012).
 
19.
S.-Y. Chung, M. A. Elrahman, D. Stephan, P. H. Kamm, Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography, Constr. Build. Mater. 118, 204–215 (2016).
 
20.
K. Natesaiyer, C. Chan, S. Sinha-Ray, D. Song, C. L. Lin, J. D. Miller, E. J. Garboczi, A. M. Forster, X–ray ct imaging and fi nite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: insights into foam variability, J. Mat. Science 50, 4012–4024 (2015).
 
21.
N. Otsu, A threshold selection method from gray-level histograms, Man and Cybernetics, 62–66 (1979).
 
22.
F. Cui, X. L. Wang, S. Peng, C. Vogel, A parallel algorithm for Quasi Euclidean distance transform, Journal of Image and Graphics 6, 009 (2004).
 
23.
D. Gastaldi, F. Canonico, L. Capelli, E. Boccaleri, M. Milanesio, L. Palin, G. Croce, F. Marone, K. Mader, M. Stampanoni, In situ tomographic investigation on the early hydration behaviors of cementing systems, Constr. Build. Mater. 29, 284–290 (2012).
 
24.
M. Parisatto, M. C. Dalconi, L. Valentini, G. Artioli, A. Rack, R. Tucoulou, G. Cruciani, G. Ferrari, Examining microstructural evolution of Portland cements by in-situ synchrotron micro-tomography, Mater. Struct. 50, 1805–1817 (2015).
 
25.
S.-Y. Chung, T.-S. Han, S.-Y. Kim, J.-H. J. Kim, K. S. Youm, J.-H. Lim, Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions, Cem. Concr. Comp. 65, 150–162 (2016).
 
26.
X. Lui, K. S. Chia, M.-H. Zhang, Water absorption, permeability, and resistance to chloride-ion penetration of lightweight aggregate concrete, Constr. Build. Mater. 25, 335–343 (2011).
 
27.
Q. L. Yu, P. Spiesz, H. J. H. Brouwers, Ultra-lightweight concrete: Conceptual design and performance evaluation, Cem. Concr. Comp. 61, 18–28 (2015).
 
ISSN:1425-8129
Journals System - logo
Scroll to top