C-S-H and concrete properties
 
 
More details
Hide details
1
Laboratoire de Recherches sur la Reactivité des Solides UMR CNRS – Université de Bourgogne, Dijon, France
 
 
Publication date: 2010-11-01
 
 
Cement Wapno Beton 15(6) 315-326 (2010)
 
ACKNOWLEDGEMENTS
The author would like to thank the French Technical Association of Cement Manufacturers (ATILH), the Regional Council of Bourgogne and CNRS for their financial support for most of the studies reported. The large input of students and collaborators to the results presented here is greatly acknowledged.
 
REFERENCES (40)
1.
H. W. W. Taylor, Cement Chemistry, Academic Press, 475, London 1990.
 
2.
H. F. W. Taylor, Cement chemistry, Academic Press, 475, 1997.
 
3.
D. H. Everett, Basic principles of colloid science, Royal society of chemistry, 246, 1988.
 
4.
S. Gauffi net, et al., Observation directe de la croissance d’hydrosilicate de calcium sur des surfaces d’alite et de silice par microscopie a force atomique. Comptes Rendus de l’Academie des Sciences - Series IIA - Earth and Planetary Science, 1998. 327(4): p. 231-236.
 
5.
S. Gauffi net, et al., AFM and SEM studies of C-S-H growth on C3S surface during its early hydration, in XXth International Conference on cement microscopy, Guadalajara, Mexico 1998.
 
6.
M. A. Schultz, L. J. Struble, Use of oscillatory shear to study fl ow behaviour of fresh cement paste, Cement Concrete Research, 23(2), p. 273-282 (1993).
 
7.
L. Nachbaur, et al., Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting, Cement and Concrete Research, 31(2), p. 183-192 (2001).
 
8.
C. F. Zukoski, L. J. Struble, Rheology of Cementitious systems, MRS bulletin, p. 39-42 (1993).
 
9.
A. Nonat, The structure and stoichiometry of C-S-H, Cement and Concrete Research, 34(9): p. 1521-1528 (2004).
 
10.
A. Nonat, The structure of C-S-H, Cement Wapno Beton, 2, p. 65-73 (2005).
 
11.
S. A. Hamid, The crystal structure of the 11 angström natural tobermorite Ca2.25[Si2O7.5(OH)1.5], 11H2O, Zeitschrift fur Kristallograhie, 154, p. 189 (1981).
 
12.
X. Cong, R. J. Kirkpatrick, 29Si MAS NMR study of the structure of calcium silicate hydrate, Advanced Cement Based Materials, 3(3-4), p. 144-156 (1996).
 
13.
I. Klur, et al., C-S-H structure evolution with calcium content by multinuclear NMR, in Nuclear Magnetic Resonance Spectrsoscopy of CementBased Materials, A.-R.G. P. Colombet, H. Zanni, P. Sozzani, Editor Springer, p. 119-141, Berlin 1998.
 
14.
E. Lippmaa, et al., A high resolution 29Si NMR study of the hydration of tricalciumsilicate. Cement and Concerte Research, 12(5), p. 597-602 (1982).
 
15.
W. Wieker, et al., Solid-state high-resolution 29Si NMR spectroscopy of synthetic 14 A, 11 A and 9 A tobermorites, Cement and Concerte Research, 12(3), p. 333-339 (1982).
 
16.
A. Nonat, A.C.C., D. Damidot, A new model describing the variation of C-S-H Ca/Si ratio with lime concentration in solution, Cement Wapno Beton, 5, p. 184-191 (2001).
 
17.
G. Renaudin, et al., Structural characterization of C-S-H and C-A-S-H samples--Part I: Long-range order investigated by Rietveld analyses, Journal of Solid State Chemistry, 182(12), p. 3312-3319 (2009).
 
18.
T. C. Powers, Physical properties of cement paste, “Proceedings of the fourth international symposium on the chemistry of cement, session V, paper V-1; 577-613 (1960)”, 1960.
 
19.
D. L. Kantro, S. Brunauer, C. H. Weise, Development of surface in the hydration of calcium silicates, Adances in chemistry series, p. 199-219, 1961.
 
20.
H. Viallis-Terrisse, A. Nonat, J.-C. Petit, Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations, Journal of Colloid and Interface Science, 244(1), p. 58-65 (2001).
 
21.
C. Labbez, et al., Surface Charge Density and Electrokinetic Potential of Highly Charged Minerals: Experiments and Monte Carlo Simulations on Calcium Silicate Hydrate, J. Phys. Chem. B, 110(18), p. 9219-9230 (2006).
 
22.
A. Delville, R. J.-M. Pellenq, Electrostatic Attraction and/or Repulsion Between Charged Colloids: A (NVT) Monte-Carlo Study, Molecular Simulation, 24(1), p. 1-24 (2000).
 
23.
B. Jonsson, et al., Onset of Cohesion in Cement Paste, Langmuir, 20(16), p. 6702-6709 (2004).
 
24.
H. Le Chatelier, Recherches exp rimentales sur la constitution des mortiers hydrauliques, Dunod diteurs, 1904.
 
25.
S. Garrault-Gauffi net, A. Nonat, Experimental investigation of calcium silicate hydrate (C-S-H) nucleation, Journal of Crystal Growth, 200(3-4), p. 565-574 (1999).
 
26.
S. Garrault, A. Nonat, Hydrated layer formation on tricalcium and dicalcium silicate surfaces: Experimental study and numerical simulations, Langmuir, 17(26), p. 8131-8138 (2001).
 
27.
P. D. Tennis, H. M. Jennings, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cement and Concrete Research, 30(6), p. 855-863 (2000).
 
28.
H. M. Jennings, Refi nements to colloid model of C-S-H in cement: CM-II, Cement and Concrete Research, 38(3), p. 275-289 (2008).
 
29.
G. Constantinides, F.-J. Ulm, The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling, Cement and Concrete Research, 2450 (2003).
 
30.
S. F. Garrault, E. Lesniewska, A. Nonat, Study of C-S-H growth on C3S surface during its early hydration, Materials and Structures (Bagneux, France), 38(278), p. 435-442 (2005).
 
31.
L. Guldbrand, et al., Electrical double layer forces. A Monte Carlo study, J.Chem.Phys. 80(5) 2221-2228 (1984).
 
32.
J. Israelachvili, Intermolecular & Surface Forces, 2nd Edition, San Diego: Academic Press, Harcourt Brace & Company, 1992.
 
33.
S. P. Jiang, J. C. Mutin, A. Nonat, Studies on mechanism and physicochemical parameters at the origin of the cement setting, I. The fundamental processes involved during the cement setting. Cement and Concrete Research, 25(4), p. 779-789 (1995).
 
34.
S. P. Jiang, J. C. Mutin, A. Nonat, Studies on mechanism and physicochemical parameters at the origin of the cement setting, II. Physicochemical parameters determining the coagulation process, Cement and Concrete Research, 26(3), p. 491-500 (1996).
 
35.
C. Plassard, et al., Nanoscale Experimental Investigation of Particle Interactions at the Origin of the Cohesion of Cement. Langmuir, 21(16), p. 7263-7270 (2005).
 
36.
A. Nonat, Du gâchage à l’état durci, ce sont les mêmes liaisons qui sont à l’oeuvre, Revue française de génie civil, 2(7), p. 759-765 (1998).
 
37.
I. Pochard, et al., The effect of polycations on early cement paste, Cement and Concrete Research, 40(10), p. 1488-1494 (2010).
 
38.
A. Itul, A. N., R. Flatt, F. Svegl The effects of silanes on the hydration of cement Annales de Chimie - Science- des Matériaux, 3(sup. 11), p. 283-290 (2008).
 
39.
M. Zajac, et al., Effect of temperature on the development of CSH during early hydration of C3S, Proceedings of the 12th International Congress on the Chemistry of Cement, Edited by J.J. Beaudoin, J. M. Makar and L. Raki, 8, 13, Montreal July 2007.
 
40.
M. Zajac, S. G., A. Nonat, Effect of the hydration temperature on mechanical resistance of Portland cement mortar and paste, Cement Wapno Beton, 2, p. 68-75 (2007).
 
ISSN:1425-8129
Journals System - logo
Scroll to top