High - strength concrete from Portland cement with addition of metakaolin obtained of kaolin sand from deposit near Lučenec in Slovakia
 
More details
Hide details
1
Building Testing and Research Institute, Bratislava, Slovakia
 
2
Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Bratislava, Slovakia
 
 
Publication date: 2017-05-01
 
 
Cement Wapno Beton 22(3) 187-200 (2017)
 
KEYWORDS
ACKNOWLEDGEMENTS
This article is the result of studies conducted in Building Testing and Research Institute and Faculty of Chemical and Food Technology of Slovak University of Technology in Bratislava on the basis of the contracted research for industry. The authors wish to acknowledge the fi nancial support for the investigation of the company PJ Claystone, s. r. o. Lučenec, Slovakia.
REFERENCES (57)
1.
CEMBUREAU activity report 2013 (D2014/5457), The European Cement Association Brussels, Belgium 2014.
 
2.
E. Gartner, Industrially interesting approaches to “low - CO2” cements, Cem. Concr. Res., 34, 1489-1498 (2004).
 
3.
M. Schneider, CO2 - Minderung Weltweite Anforderungen. Proceeding Technisch Wissenschaftliche Zementtagung, Dűsseldorf, 1-27 (2011).
 
4.
M. Palou, J. Majling, M. Dováľ, J. Kozánková, S. C. Mojumdar, Formation and stability of crystallohydrates in the non-equilibrium system during hydration of SAB cements, Ceram. – Silikaty, 49, 230-236 (2005).
 
5.
P. S. L. Souza, D. C. C. Dal Molin, Viability of using calcined clays from industrial by-products as pozzoland of high reactivity, Cem. Concr. Res., 35, 1993-1998 (2005).
 
6.
V. G. Papadakis, S. Tsiman, Supplementary cementing materials in concrete: Part I: effi ciency and design, Cem. Concr. Res., 32, 1525-1532 (2002).
 
7.
STN EN 197-1: Cement. Part 1: Composition, specifi cations and conformity criteria for common cements. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2012.
 
8.
C. He, B. Osback, E. Makovicky, Pozzolanic reactions of six principal clay minerals: Action, reactivity assessment and technological effects, Cem. Concr. Res., 25, 1691-1702 (1995).
 
9.
J. Ambroise, S. Maximilien, J. Pera, Properties of metakaolin blended cements, Adv. Cem. Res., 1, 161-168 (1993).
 
10.
D. D. Vu, Strength properties of metakaolin-blended paste, mortar and concrete, Delft: DOP Science Editors, Delft University Press 2002.
 
11.
N. J. Coleman, C. L. Page, Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin, Cem. Concr. Res., 27, 147-154 (1997).
 
12.
C. S. Poon, L. Lam, S. C. Kou, Y. L. Wong, C. C. Wong, Rate of pozzolanic reaction of metakaolin in high performance cement pastes, Cem. Concr. Res., 31, 1301-1306 (2001).
 
13.
M. Frias, J. G. Cabrera, Pore size distribution and degree of hydration of MK cement paste. Cem. Concr. Res., 30, 561-569 (2000).
 
14.
M. Frias, M. J. Sanchez de Rojas, Infl uence of the MK on pororus of matrixes based in MK/cement, Mater. de Constr., 50, 57-67 (2000).
 
15.
S. S. Sabir, S. Wild, J, Bai, Metakaolin and calcined class as pozzolans for concrete: a review, Cem. Concr. Compos., 23, 441-454 (2001).
 
16.
M. Zemlicka, E. Kuzielova, M. Kuliffayova, J. Tkacz, M. Palou, Study of hydration products in the model systems metakaolin - lime and metakaolinlime-gypsum, Ceram. – Silikaty, 59, 283-291 (2015).
 
17.
E. Badogiannis, G. Kakali, G. Dimopolou, E. Chaniotakis, S. Tsivilis, Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins, Cem. Concr. Compos., 27, 197-203 (2005).
 
18.
E. Badogiannis, V. G. Papadakis, E. Chaniotakis, S. Tsivilis, Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of k-value, Cem. Concr. Res., 34, 1035-1041 (2004).
 
19.
D. D. Eberl, User´s guide to RockJock – a program for determining quantitative mineralogy from powder X-ray diffraction data, US Geological Survey, (Open File Report 03-78), 2003.
 
20.
I. Kraus, P. Uhlík, M. Dubíková, T. Manfredini, J. Pavlíková, V. Šucha, M. Hanísková, M. Honty, Mineralogical, chemical and technological characterization of metakaolin sand. Marco Poppi, Fernanda Andreola and Daniele Malferrari Editors, EUROCLAY proceedings abstract book, 160-161, Italy 2003.
 
21.
L. Krajci, I. Janotka, F. Puertas, M. Palacios, M. Kuliffayova, Long-term properties of cement composites with various metakaolinite contents, Ceram. - Silikaty, 57, 74-81 (2013).
 
22.
I. Janotka, F. Puertas, M. Palacios, M. Kuliffayova, C. Varga, Metakaolin sand-blended-cement pastes: Rheology, hydration process and mechanical properties, Constr. and Build. Mater., 24, 791-802 (2010).
 
23.
M. Shekarchi, A. Bonakdar, M. Bakshi, A. Mirdamadi, B. Mobasher, Transportation properties in metakaolin concrete, Constr. Build. Mater., 24, 2217-2223 (2010).
 
24.
V. Srivastava, R. Kumar, V. C. Argaval, Metakaolin inclusion: Effect on mechanical properties of concrete, J. Acad. Indus. Res., 1, 251-253 (2012).
 
25.
J. M. Justice, K.E. Kurtis, Infl uence of metakaolin surface area on properties of cement-based materials, J. Mater. Civ. Eng., 19, 762-771 (2007).
 
26.
H. S. Wong, A. H. Razak, Effi ciency of calcined metakaolin and silica fume as cement replacement material for strength performance, Cem. Concr. Res., 35, 696-702 (2005).
 
27.
B. B. Patil, P. D. Kumbhar, Strength and durability properties of high performance concrete incorporating high reactivity metakaolin, Int. J. Modern. Eng. Res., 2, 1099-1104 (2012).
 
28.
S. N. Patil, A. K. Gupta, S. S. Desphande, Metakaolin-pozolanic material for cement in high strength concrete, J. Mech. Civ. Eng., 2, 46-49 (2011).
 
29.
P. Dinakar, P. K. Sahoo, G. Sriram, Effect of metakaolin content on the properties of high strength concrete, Int. J. Concr. Struc. Mater., 7, 215-223 (2015).
 
30.
E. Vejmělková, M. Pavlíkova, M. Keppert, Z. Keršner, P. Rovnaníková, P. Ondráček, M. Sedlmajer, R. Černý, High performance concrete with Czech metakaolin: Experimental analysis of strength, thoughness and durability characteristics, Construc. Build. Mater., 24, 1404-1411 (2010).
 
31.
P. Muthupriya, K. Subramanian, B. G. Vishnuram, Investigation on behaviour of high performance reinforced concrete columns with metakaolin and fl y ash as admixture, Int. J. Adv. Eng. Tech., 2, 190-202 (2011).
 
32.
M. N. Al- Akhras, Durability of metakaoilin concrete to sulfate attack, Cem. Concr. Res., 36, 1727-1734 (2006).
 
33.
H. M. Khater, Infl uence of metakaolin on resistivity of cement mortar to magnesium chloride solution, Ceram – Silikaty, 54, 325-333 (2010).
 
34.
Chao Li, Henghu Sun, Longtu Li, A review: The comparison beween alcali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements, Cem. Concr. Res., 40, 1341-1349 (2010).
 
35.
H. Paiva, A. Velosa, P. Cachim, V. M. Ferreira, Effect of pozzolans with different physical and chemical characteristics on concrete properties, Mater. de Construc., 66, e083 (2016).
 
36.
STN EN 12620 + A1: Aggregates for concrete. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2008.
 
37.
M. Frias, M. I. Sanchez de Roja, J. Cabrera, The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin - cement mortars, Cem. Concr. Res., 30, 209-216 (2000).
 
38.
S. Donatello, M. Tyrer, C. R. Cheeseman, Comparison of test methods to assess pozzolanic activity, Cem. Concr. Compos., 32, 121-127 (2010).
 
39.
STN EN 12390-2: Testing hardened concrete. Part 2: Making and curing specimens for strength tests. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2010.
 
40.
STN EN 12350-2: Testing fresh concrete. Part 2: Slump-test. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2010.
 
41.
STN EN 12350-6: Testing fresh concrete. Part 6: Density. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2011.
 
42.
STN EN 12350-7: Testing fresh concrete. Part 7: Air content. Pressure methods. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2011.
 
43.
STN EN 12390-3/AC: Testing hardened concrete. Part 3: Compressive strength of test specimens. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2010.
 
44.
STN 73 1371: Method of ultrasonic pulse testing of concrete. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 1981.
 
45.
STN ISO 6784: Concrete. Determination of static modulus of elasticity in compression. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 1993.
 
46.
STN EN 12390-7: Testing hardened concrete. Part 7: Density of hardened concrete. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2011.
 
47.
STN 73 1316: Determination of moisture content, absorptivity and capillarity of concrete. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 1989.
 
48.
STN EN 12390-8: Testing hardened concrete: Part 8: Depth of penetration of water under pressure. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2011.
 
49.
STN 73 1322: Change 1-3/03. Correction 1 - 6/04. Determination of frost resistance of concrete. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 1968.
 
50.
STN 73 1317: Determination of compressive strength of concrete. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 1986.
 
51.
STN EN 12390-5: Testing hardened concrete. Part 5: Flexural strength of test specimens Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2011.
 
52.
STN 73 1326: Resistance of cement concrete surface to water and defrosting chemicals Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 1984.
 
53.
E. Mazzucato, G. Artioli, A. Gualtieri, High temperature dehydroxylation of muscovite - 2M: a kinetic study by in situ XRPD, Phys. Chem. Miner., 26, 375-381 (1999).
 
54.
T. Kazauyo, N. Satoru, Dehydration kinetics of muscovite by in situ infrared spectroscopy, Phys. Chem. Miner., 37, 91-101 (2010).
 
55.
H. W. Day, The high temperature stability of muscovite plus quartz, Amer. Miner., 58, 255-262 (1973).
 
56.
B. Sonuparlak, M. Sarikaya, I. A. Aksay, Spinel phase formation during the 980°C exothermic reaction in the kaolinite-tomullite reaction series, J. Am. Ceram. Soc., 70, 837-842 (1987).
 
57.
STN EN 206: Concrete. Specifi cation, performance, production and conformity. National Annex. Bratislava: Slovak Offi ce of Standards, Metrology and Testing, 2015.
 
ISSN:1425-8129
Journals System - logo
Scroll to top