Application of concrete as a material for anti-radiation shielding – a review
 
More details
Hide details
 
Publication date: 2013-03-01
 
 
Cement Wapno Beton 18(2) 115-132 (2013)
 
ACKNOWLEDGEMENTS
Paper is based on the text presented at the Conference ‘Dni Betonu’, Wisła, October 2012 and published in the proceedings
REFERENCES (45)
1.
Z. Ablewicz, W. B. Dubrowski, Osłony przed promieniowaniem jonizującym. Arkady, Warszawa 1986.
 
2.
M. Abramowicz, A. Ciaś, Rozszerzalność liniowa betonów osłonowych. Arch. Inż. Ląd., 21, 4, 667-677 (1975).
 
3.
I. Akhurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akhurt, Radiation shielding of concretes containing different aggregates, Cem. Concr. Res., 28, 153-157 (2006).
 
4.
I. Akhurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite. Radiation Measurements, 45, 827-830 (2010).
 
5.
M. Alexander, S. Mindess, Aggregates in concrete, Taylor & Francis 2005.
 
6.
Y. Asano, Application of heavy concretes to the shield materials of synchrotron radiation beams. Radiation Measurements 46, 546-550 (2011).
 
7.
I. I. Bashter, A. S. Makarious, Abdro A. El-Sayed, A comparative study of the attenuation of reactor thermal neutrons in different types of concrete. Ann. Nucl. Energy, 23, 14, 1185-1195 (1996).
 
8.
I. I. Bashter, Abdro A. El-Sayed, A. S. Makarious, Investigation of hematite-serpentine and ilmenite-limonite concretes for reactor radiation shielding, Ann. Nucl. Energy, 23, 1, 65-71 (1996).
 
9.
H.-D. Beushausen, M. G. Alexander, High-density concrete for special applications. Betonwerk & Fertigteil Technik, Fachbeiträge 9 (2003).
 
10.
C. Basyigit, J. Akkurt, R. Altindag, S. Kilincarslan, A. Akkurt, B. Mavi, R. Karaguzel, The effect of freezing-thawing (F-T) cycles on the radiation shielding properties of concretes. Building and Environment, 41, 1070- 1073 (2006).
 
11.
D. G. Bennett, R. Gens, Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion. J. of Nuclear Materials, 379, 1-8 (2008).
 
12.
E. Calzada, F. Grünaur, B. Schillinger, H. Türck, Reusable shielding material for neutron- and gamma- radiation. Nucl.Instr.and Methods in Ph. Res. A 651, 77-80 (2011).
 
13.
J. R. Clifton, Predicting the remaining service life of concrete. NIST, US Dept. of Commerce 1991.
 
14.
O. Gencel, Physical and mechanical properties of concrete containing hematite as aggregates. Sci. Eng. Compos. Mater, 19, 2, 191-199 (2011).
 
15.
O. Gencel, W. Brostow, C. Ozel, M. Filiz, An investigation on the concrete properties containing colemanite. Int. J. of Physical Science, 5, 3, 216-225 (2010).
 
16.
O. Gencel, A. Bozkurt, E. Kam, T. Korkut, Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions. Ann.of Nucl. Energy, 38, 2719-2733 (2011).
 
17.
D. Jóźwiak-Niedźwiedzka, K. Gibas, M. A. Glinicki, G. Nowowiejski, Szczelność betonów z popiołem lotnym wapiennym wobec wnikania mediów agresywnych, Drogi i Mosty, 11, 3, 39-61 (2011).
 
18.
D. Jóźwiak-Niedźwiedzka, A. M. Brandt, Z. Ranachowski, Self-healing of cracks in fi bre reinforced mortar beams made with high calcium fl y ash, Cement Wapno Beton, 79, 1, 38-49 (2012).
 
19.
D. Jóźwiak-Niedźwiedzka, M. Sobczak, K. Gibas, Karbonatyzacja betonów z dodatkiem popiołów lotnych wapiennych, Roads and Bridges - Drogi i Mosty, 12, 2, 131-146 (2013).
 
20.
Y. Ch. Kan, K. C. Pei, C. L. Chang, Strength and fracture toughness of heavy concrete with various iron aggregate inclusions. Nucl. Eng. and Design, 228, 119-127 (2004).
 
21.
W. A. Kansouh, Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield. Ann. of Nucl. Energy, 47, 258-263 (2012).
 
22.
M. F. Kaplan, Concrete radiation shielding. John Wiley & Sons, N. York 1989.
 
23.
M. H. Kharita, S. Yousef, M. Al Nassar, The effect of the initial water to cement ratio on shielding properties of ordinary concrete. Progress in Nuclear Energy, 53, 491-493 (2010).
 
24.
M. H. Kharita, S. Yousef, M. Al Nassar, Review on the addition of boron compounds to radiation shielding concrete. Progress in Nuclear Energy, 53, 207-211 (2011).
 
25.
M. H. Kharita, M. Takeyeddin, M. Alnassar, S. Yousef, Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Progress in Nuclear Energy, 50, 33-36 (2008).
 
26.
S. Kilincarslan, I. Akhurt, C. Basyigit, The effect of barite rate on some physical and mechanical properties of concrete. Materials Science and Engineering A 424, 83-86 (2006).
 
27.
T. Korkut, A. Karabulut, G. Budak, Aygün, O. Gencel, Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Rad. and Isot., 70, 341-345 (2012).
 
28.
A. Koton, P. Trybalski, Beton barytowy jako osłona przed promieniowaniem radioaktywnym. Stow. Prod. Cem., Konf. „Dni Betonu”, 685-694, Wisła 2008.
 
29.
C. M. Lee, Y. H. Lee, K. J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure, Prog. in Nucl. Energy, 49, 303-312 (2007).
 
30.
A. S. Makarious, I. I. Bashter, Abdo A. El-Sayed, M. Samir Abdel Azim, W. A. Kansouh (1996) Ann. Nucl. Energy, 23, 3, 195-206 (1996).
 
31.
M. Marks, D. Jóźwiak-Niedźwiedzka, M. A. Glinicki, Automatic categorization of chloride migration into concrete modifi ed with CFBC ash, Int. J. Computers and Concrete, 9, 5, 393-405 (2012).
 
32.
S. Mindess, J. F. Young, D. Darwin, Concrete, 2nd ed., Prentice Hall 2003.
 
33.
S. M. J. Mortazavi, M. A. Mosleh-Shirazi, N. Raadpeyl, M. BaradaranGhahfarokhi, High-performance heavy concrete for multi-purpose shield. Oxford Journals on-line, October 2010.
 
34.
D. Mostofi nejad, M. Reisi, A. Shirani, Mix design effective parameters on c-ray attenuation coeffi cient and strength of normal and heavyweight concrete. Construction and Building Materials, 28, 224–229 (2012).
 
35.
D. J. Naus, C. B. Oland, B. R. Ellingwood, H. L. Graves III, W. E. Norris, Aging management of containment structures in nuclear power plants. Nuclear Engineering and Design, 166, 367-379 (1996).
 
36.
D. J. Naus, ed. (1999) Considerations for use in managing the aging of nuclear power plant concrete structures. RILEM Report 19 (1999).
 
37.
D. J. Naus, The management of aging in nuclear power plant concrete structures, JOM, 61, 7, 35-41, July 2009.
 
38.
A. M. Neville, Properties of Concrete, Pitman 1963.
 
39.
D. R. Ochbelagh, S. A. Khani, H. G. Mosavinejad, Effect of gamma and lead as an additive material on the resistance and strength of concrete. Nuclear Engineering and Design 241, 2359-2363 (2011).
 
40.
E. Pohl, Technika jądrowa w budownictwie. Arkady, Warszawa 1967.
 
41.
W. Szteke, E. Hajewska, W. Biłous, M. Przyborska, A. Malczyk, J. Wasiak, M. Wieczorkowski, Z. Rozenblicki, Badanie betonów stosowanych w technologiach jądrowych, IEA Polatom, Raport A 145,73- 79 (2010).
 
42.
I. B. Topçu, Properties of heavyweight concrete produced with barite. Cem. Concr. Res., 33,6, 815-822 (2003).
 
43.
Y. Yarar, Activation characteristics of concrete shields containing colemanite. J. of Nuclear Materials, 233-237, 1511-1515 (1996).
 
44.
Y. Zheng, H. Li, Evaluation of protective quality of prestressed concrete containment buidlings of nuclear power plant. J. Cent. South. Univ. Technol., 18, 238-243 (2011).
 
45.
International Atomic Energy Agency (IAEA), P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna, Austria, Offi cial.Mail@iaea.org.
 
ISSN:1425-8129
Journals System - logo
Scroll to top