Experimental study of strength, pore structure and phase evolution characteristics of iron tailings cemented paste backfill under high-temperature
More details
Hide details
1
College of Civil and Transportation Engineering, Hohai University, No.1 Xi Kang Road, Nanjing 210098, China
2
Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, No.43 Hujuguan, Nanjing 210029, China
Publication date: 2020-08-02
Cement Wapno Beton 25(2) 78-94 (2020)
KEYWORDS
ABSTRACT
With the deepening of mining depth, the geothermal temperature faced by the pit backfill is getting higher and higher, so the spontaneous combustion probability of sulfur-bearing minerals increases. In addition, sudden fires can expose the backfill to high temperatures, which will endanger the structural safety of the backfill. Therefore, in order to fully understand the mechanical response and pore structure evolution characteristics of backfills under high-temperature loading, the compressive strength and splitting tensile strength of backfills with different ages: 7 days, 28 days and 60 days and cement-tailings ratios: 1:6, 1:8 and 1:10 were tested using high-temperature furnace to simulate different temperature loads: 100, 200, 400, 600 and 800°C. The pore structure characteristics of the backfill after high temperature are analyzed by mercury intrusion porosimetry. To further understand the mechanism of backfill transformation at high temperature, the phase evolution characteristics of iron tailings and cementitious materials are analyzed by X-ray diffractometer and differential thermal/thermogravimetric analyzer. The results show that the strength and pore structure of iron tailings backfill at high temperature are related to the curing age. The strength and most probable pore size of backfill cured at 7 days increased first and then decreased with the increase of temperature. Among them, the compressive strength and splitting tensile strength reached their peak values at 200°C and 100°C, respectively. While after 28 days, the pore size increased with the increase of high temperature, and the strength of backfill decreased continuously with increasing temperature. No matter what age of backfill is, it almost loses its tensile strength after being subjected to a high temperature above 400°C. These characteristics are closely related to the expansion of mica in iron tailings and the dehydration and decomposition of cementing material hydration products, such as ettringite and C-S-H phase at high temperature.
REFERENCES (55)
1.
M. Rico, G. Benito, A. R. Salgueiro, A. Díez-Herrero, H. G. Pereira, Reported tailings dam failures: A review of the European incidents in the worldwide context, J. Hazard. Mater. 152, 846-852 (2008).
2.
C. Xiong, W. Li, L. Jiang, W. Wang, Q. Guo, Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes, Constr. Build. Mater. 150, 66-76 (2017).
3.
R. S. Sharma, T. S. Al-Busaidi, Groundwater pollution due to a tailings dam, Eng. Geol. 60, 235-244 (2001).
4.
S. Azam, Q. Li, Tailings dam failures: a review of the last one hundred years, Geotech. News. 28, 50-54 (2010).
5.
T. Belem, M. Benzaazoua, Design and application of underground mine paste backfill technology, Geotech. Geol. Eng. 26 (2), 147-174 (2008).
6.
F. W. Brackebusch, Basics of paste backfill systems, Min. Eng. J. 46 (10) 1175–1178 (1994).
7.
M. Fall, M. Benzaazoua, E. G. Saa, Mix proportioning of underground cemented tailings backfill, Tunn. Undergr. Sp. Tech. 23 (1),80-90 (2008).
8.
S. Zhang, X. Xue, X. Liu, P. Duan, H. Yang, T. Jiang, R. Liu, Current situation and comprehensive utilization of iron ore tailing resources, J. Min. Sci. 42(4), 403-408 (2006).
9.
B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci, İ. Alp, Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings, J. Hazard. Mater, 179 (1-3), 940-946 (2010).
10.
R. J. Mitchell, R. S. Olsen, J. D. Smith, Model studies on cemented tailings used in mine backfill, Can. Geotech. J. 19 (1), 14-28 (1982).
11.
L. M.Amaratunga, D. N. Yaschyshyn, Development of a high modulus paste fill using fine gold mill tailings, Geotech. Geol. Eng. 15 (3), 205-219 (1997).
12.
M. Fall, M. Benzaazoua, Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization, Cem. Concr. Res. 35, 301–314 (2005).
13.
X. Ke, H. Hou, M. Zhou, Y. Wang, X. Zhou,.Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater. 96, 378-382 (2015).
14.
M. Fall, M. Benzaazoua, S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng. 18 (1), 41-44 (2005).
15.
M. Benzaazoua, T. Belem, B. Bussière. Chemical factors that influence the performance of mine sulphidic paste backfill, Cem. Concr. Res. 32 (7), 1133-1144 (2002).
16.
A. Kesimal, E. Yilmaz, B. Ercikdi, I. Alp, H. Deveci, Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill, Mater. Lett. 59 (28), 3703-3709 (2005).
17.
M. Benzaazoua, M. Fall, T. Belem, A contribution to understanding the hardening process of cemented pastefill, Miner. Eng. 17 (2),141-152 (2004).
18.
A. Kesimal, E. Yilmaz, B. Ercikdi, Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents, Cem. Concr. Res. 34 (10), 1817-1822 (2004).
19.
E. Yilmaz, T. Belem, M. Benzaazoua, Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Eng. Geol. 168, 23-37 (2014)..
20.
S. Huang, K. Xia, L. Qiao, Dynamic tests of cemented paste backfill: effects of strain rate, curing time, and cement content on compressive strength, J. Mater. Sci. 46 (15), 5165-5170 (2011).
21.
E. Yilmaz, M. Benzaazoua, T. Belem, B. Bussière, Effect of curing under pressure on compressive strength development of cemented paste backfill, Miner. Eng. 22 (9), 772-785 (2012).
22.
E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater. 75, 99-111 (2015).
23.
J. C. Célestin, M. Fall, Thermal conductivity of cemented paste backfill material and factors affecting it, Int. J. Surf. Min., Reclam. Environ. 23 (4), 17 (2009).
24.
O. Nasir, Fall, M, Modeling the heat development in hydrating CPB structures, Comput. Geotech. 36 (7), 1207-1218 (2009).
25.
M. Fall, J.C. Célestin, M. Pokharel, M. Touré. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol. 114 (3), 397-413 (2010).
26.
M. Fall, M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos. 32 (10), 819-828 (2010).
27.
Y. Wang, M. Fall, A. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos. 67, 101-110 (2016)..
28.
O. Nasir, M. Fall. Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunn. Undergr. Sp. Tech. 25 (1), 9-20 (2010).
29.
W. Di, S. Cai. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill, J. Cent. South Univ. 22 (5), 1956-1964 (2015).
30.
W. Di, M. Fall, S. J. Cai, Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill, Miner. Eng. 42 (2), 76-87 (2013).
31.
A. Ghirian, M. Fall, Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments. part II: mechanical, chemical and microstructural processes and characteristics. Eng. Geol. 170 (1), 11-23 (2014).
32.
Z. Aldhafeeri, M. Fall, M. Pokharel, Z. Pouramini, Temperature dependence of the reactivity of cemented paste backfill, Appl. Geochem. 72(September), 10-19 (2016).
33.
M. Fall, S. S. Samb. Pore structure of cemented tailings materials under natural or accidental thermal loads, Mater. Charact. 59 (5), 598-605 (2008).
34.
L. Orejarena, M. Fall, Mechanical response of a mine composite material to extreme heat, Bull. Eng. Geol. Environ. 67 (3), 387-396 (2008).
35.
M. Fall, S. S. Samb, Effect of high temperature on strength and microstructural properties of cemented paste backfill, Fire Saf. J. 44 (4), 642-651 (2009).
36.
S. K. Das, S. Kumar, P. Ramachandrarao, Exploitation of iron ore tailing for the development of ceramic tiles, Waste Manage. 20 (8), 725-729 (2000).
37.
Z. L. Yi, H. H. Sun, X. Q. Wei, C. Li, Iron ore tailings used for the preparation of cementitious material by compound thermal activation, Int. J. Miner., Metall. Mater. 16(3), 355-358 (2009).
38.
P. Cheng, V. K. R. Kodur, T. C. Wang, Stress-strain curves for high strength concrete at elevated temperatures, J. Mater. Civ. Eng. 16(1), 84-90 (2004).
39.
D. R. Lankard, D. L. Birkimer, F. F. Fondfriest, M. J. Synder, Effects of moisture content on the structure properties ofPortland cement concrete exposed to temperatures up to 500°F, Temperature and Concrete, SP-25, American Concrete Institute, Detroit, 59–102 (1971).
40.
G. M. Marta, A. G. D. L. Torre, L. R Laura, E. R.Losilla, M. A. G. Aranda, I. Santacruz, Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement, Cem. Concr. Compos. 55, 53-61 (2015).
41.
Q. Jueshi, Y. Jincheng, S. Huaqiang, M. Ying, Formation and Function of Ettringite in Cement Hydrates, J. Chin. Ceram. Soc. 45 (11), 1569-1581 (2017).
42.
G. Damaris, V. A. Oliveira, L.Versiane, Kinetic and thermal decomposition of ettringite synthesized from aqueous solutions, J. Therm. Anal. Calorim. 124 (3), 1-11 (2016).
43.
Q. Zhou, F. P. Glasser, Thermal stability and decomposition mechanisms of ettringite at <120°C, Cem. Concr. Res. 31 (9), 1333-1339 (2001).
44.
J. X. Fu, C. F. Du, W. D. Song, Strength sensitivity and failure mechanism of full tailings cemented backfills, J. Univ. Sci. Technol. Beijing. 36, 1149-1157 (2014).
45.
D. D. Qiang, Y. Z. Liang, T. S. Hui, Y. Y. Liang, Study on damage evolution and constitutive equation of backfill under tensile condition, Soil. Eng. Found. 20 (3), 53-55 (2006).
46.
D. Shen, J. Jiang, J. Shen, P. Yao, G. Jiang, Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age. Constr. Build. Mater. 103 (c), 67-76 (2016).
47.
X. Chen, S. Wu, J. Zhou, Experimental study and analytical model for pore structure of hydrated cement paste, Appl. Clay Sci. 101, 159-167 (2014).
48.
X. Chen, S. Wu, Influence of water-to-cement ratio and curing period on pore structure of cement mortar, Constr. Build. Mater. 38, 804-812 (2013).
49.
Q. Zeng, K. Li, T. Fen-Chong, P. Dangla, Pore structure characterization of cement pastes blended with high-volume fly-ash, Cem. Concr. Res. 42 (1), 194-204 (2012).
50.
X. Chen, S. Wu, J. Zhou, Influence of porosity on compressive and tensile strength of cement mortar, Constr. Build. Mater. 40 (3), 869-874 (2013).
51.
E. Yilmaz, T. Belem, B. Bruno, M. Benzaazoua, Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills, Cem. Concr. Compos. 33 (6), 702-715 (2011).
52.
F. Tutti, L. S. Dubrovinsky, M. Nygren, High-temperature study and thermal expansion of phlogopite, Phys. Chem. Miner. 27 (9), 599-603 (2000).
53.
L. R. Bernier, M. Li, High temperature oxidation (heating) of sulfide paste backfill: a mineralogical and chemical perspective, Mining and the environment conference, Sudbury 2003.
54.
G. F. Peng, S. Y. N. Chan, M. Anson, Chemical kinetics of CSH decomposition in hardened cement paste subjected to elevated temperatures up to 800°C. Adv. Cem. Res. 13 (2), 47-52 (2001).
55.
G. F. Peng, Z. S. Huang, Change in microstructure of hardened cement paste subjected to elevated temperatures, Constr. Build. Mater. 22 (4), 593-599 (2008).