Photocatalytic gypsum plasters – studies of air cleaning properties and selected technical parameters
 
More details
Hide details
1
Department of Sanitary Engineering, Faculty of Civil Engineering and Architecture, Westpomeranian University of Technology, Szczecin, Poland
 
2
Department of Building Physics and Building Materials, Faculty of Civil Engineering and Architecture, Westpomeranian University of Technology, Szczecin, Poland
 
3
Institute of Inorganic Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, Westpomeranian University of Technology, Szczecin, Poland
 
 
Publication date: 2019-02-09
 
 
Cement Wapno Beton 24(1) 10-20 (2019)
 
ABSTRACT
The use of limestone in lime and clinker production respectively represents one of the biggest industrial branches worldwide. Decarbonization is a crucial part of the burning process. No clear prediction method of the decarbonisation heat for a particular limestone, even in a relative scale, has been published yet. In the presented research, ten diverse very pure limestone samples from neoproterozoic up to cretaceous were studied by means of light microscopy, powder XRD and differential scanning calorimetry. The samples showed similar mineralogical compositions and relatively close calcite crystallinity including mean crystals size, but very different microstructures and the crystals sizes. DSC was used to measure and compare the heat of different limestones decarbonisation. With the exception of three samples with extremely dense or coarse microstructure, a strong correlation of 0.95 according to the Pearson test between mean size of calcite crystals and the value of the decarbonisation heat was found.
 
REFERENCES (19)
1.
M. A. Rauf, M. A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination 276, 13 (2011).
 
2.
T. Ochiai, A. Fujishima, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification, J. Photochem. Photobiol. C., 13, 247 (2012).
 
3.
K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C., 13, 169 (2012).
 
4.
L. Yang, A. Hakki, F. Wang, D. E. Macphee, Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement, Appl. Catal. B- Environm., 222, 200 (2018).
 
5.
M. Janus, K. Zając, Concretes with photocatalytic activity, Chapter 6 in High Performance Concrete Technology and Applications, edited by S.Yilmaz and H. B. Ozmen, Intech Open Science 2016.
 
6.
A. P. Werle, M. L. de Souza, K. Loh, R. Ando, V. M. John, The performance of a self-cleaning cool cementitious surface, Energ. Buildings, 114, 200 (2016).
 
7.
S. S. Lucas, V. M. Ferreira, J. L. Barroso de Aguiar, Incorporation of titanium dioxide nanoparticles in mortars- influence of microsturcture in the hardened state properties and photocatalytic activity, Cem. Concr. Res., 43, 112 (2013).
 
8.
L. Biloxi, G. Di Luzio, J. F. Labuz, Mechanical properties of photocatalytic white concrete subjected to high temperatures, Cem. Concr. Compos., 39, 73 (2013).
 
9.
S. Krispel, M. Peyerl, G. Maier, The influence of concrete roads on safety and energy saving in tunnels, Cement Wapno Beton, 85, 379-395 (2018).
 
10.
A. Folli, M. Strøm, T. P. Madsen, T. Henriksen, J. Lang, J. Emenius, T. Klevebrant, Å. Nilsson, Field study of air purifying paving elements containing TiO2, Atmos. Environ. 107, 44 (2015).
 
11.
G. L. Guerrini, A. Plassais, C. Pepe, L. Sassar, Use of photocatalytic cementitious materials for self-cleaning applications, International RILEM Symposium on Photocatalysis Environment and Construction Materials, 55, 219 (2007).
 
12.
S. Chłądzyński, Spoiwa gipsowe w budownictwie, Dom Wydawniczy Medium, Warszawa 2008.
 
13.
M. Palaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M.H. Entezari, D. D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B- Environ., 125, 331 (2012).
 
14.
K. Bubacz, J. Choina, D. Dolat, E. Borowiak-Paleń, D. Moszyński, A.W. Morawski, Studies on nitrogen modified TiO2photocatalyst prepared in different conditions, Mater. Res. Bull., 45, 1085 (2010).
 
15.
K. Zając, E. Kusiak-Nejman, A. W. Morawski, M. Janus, The influence of irradiation on stability and effectiveness of TiO2/N,C photocatalysts – accepted in Micro & Nano Letters.
 
16.
J. Halbiniak, B. Langier, Mrozoodporność betonu popiołowego a charakterystyka porów powietrznych, Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo 20, 62 (2014).
 
17.
J. Chen, S. C. Kou, C. S. Poon, Hydration and properties of nano-TiO2 blended cement composites, Cem. Concr. Compos., 34, 642 (2012).
 
18.
M. Wieczorek, P. Pichniarczyk, Mechanizmy destrukcji tynków gipsowych, Prace Instytutu Ceramiki i Materiałów Budowlanych, 8, 151 (2011).
 
19.
P. Pichniarczyk, G. Malata, M. Sobala, Trwałość tynków gipsowych na podłożu betonowym, Cement Wapno Beton, 69, 215 (2002).
 
ISSN:1425-8129
Journals System - logo
Scroll to top