Isothermal-calorimetry study of the effect of plasticizer and air-entraining agent on the hydration kinetics of blended cements containing brick powder as a pozzolanic addition
 
More details
Hide details
1
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic
 
 
Publication date: 2016-01-01
 
 
Cement Wapno Beton 21(1) 1-9 (2016)
 
KEYWORDS
ACKNOWLEDGEMENTS
This research has been supported by the Czech Science Foundation, under project No 16-02862S.
REFERENCES (24)
1.
G. Baronio, L. Binda, Study of the pozzolanicity of some bricks and clays. Constr. Build. Mat., 11, 41-46 (1997).
 
2.
S. Wild, A. Gailius, H. Hansen, L. Pederson, J. Szwabowski, Pozzolanic properties of a variety of European clay bricks. Build. Res. Inf., 25, 170-175 (1997).
 
3.
S. Wild, Observations on the use of ground waste clay brick as a cement replacement material. Build. Res. Inf., 24, 35-40 (1996).
 
4.
L. A. Pereira-de-Oliveira, J. P. Castro-Gomes, P.M.S Santos, The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr. Build. Mat., 31, 197-203 (2012).
 
5.
J. Ambroise, M. Murat, J. Pera, Hydration reaction and hardening of calcined clays and related minerals. V – extension of the research and general conclusions. Cem. Concr. Res., 15, 261-268 (1985).
 
6.
C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals activation, reactivity assessments and technological effects. Cem. Concr. Res., 25, 1691-1702 (1995).
 
7.
B. B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clay as pozzolans for concrete: a review. Cem. Concr. Comp., 23, 441-454 (2001).
 
8.
E. Vejmelková, M. Pavlíková, M. Keppert, Z. Keršner, P. Rovnaníková, M. Ondráček, M. Sedlmajer, R. Černý. High Performance Concrete with Czech Metakaolin: Experimental Analysis of Strength, Toughness and Durability Characteristics. Constr. Build. Mat., 24, 1404-1411 (2010).
 
9.
F. Pacheco-Torgal, S. Jalali, Reusing ceramic wastes in concrete. Constr. Build. Mat., 24, 832-838 (2010).
 
10.
A. E. Lavat, M. A. Trezza, M. Poggi, Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Management, 29, 1666-1674. (2009).
 
11.
R. M. Senthamarai, P. Devadas Manoharan, Concrete with ceramic waste aggregate. Cem. Concr. Comp., 27, 910-913 (2005).
 
12.
R. Silvestre, E. Medel, A. García, J. Navas, Utilizing recycled ceramic aggregates obtained from tile industry in the design of open graded wearing course on both laboratory and in situ basis. Materials and Design, 50, 471-478 (2013).
 
13.
C. Medina, M. I. Sánchez de Rojas, M. Frías, Properties of recycled ceramic aggregate concretes: Water resistance. Cem. Concr. Comp., 40, 21-29 (2013).
 
14.
F. Bektas, Alkali reactivity of crushed clay brick aggregate. Constr. Build. Mat., 52, 79-85 (2014).
 
15.
E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Properties of high performance concrete containing fi ne-ground ceramics as supplementary cementitious material. Cem. Concr. Comp., 34, 55-61 (2012).
 
16.
F. Pacheco-Torgal, S. Jalali, Compressive strength and durability properties of ceramic wastes based concrete. Materials and Structures, 44, 155-167 (2011).
 
17.
M. C. Bignozzi, S. Bonduà. Alternative blended cement with ceramic residues: Corrosion resistance investigation on reinforced mortar. Cem. Concr. Res., 41, 947-954 (2011).
 
18.
C. Medina, P.F.G. Banfi ll, M.I. Sánchez de Rojas, M. Frías, Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mat., 40, 822-831 (2013).
 
19.
T. Kulovaná, E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý, Air-entrained concrete technology as an effective tool for increasing the limits of brick powder percentage in blended Portland cement binders, Cement Wapno Beton, 82, 1, 11-24 (2015).
 
20.
V. Tydlitát, J. Zákoutský, P. Volfová, R. Černý, Hydration heat development in blended cements containing fi ne-ground ceramics. Thermochimica Acta, 543, 125-129 (2012).
 
21.
V. Tydlitát, P. Tesárek, R. Černý, Effects of the Type of Calorimeter and the Use of Plasticizers and Hydrophobizers on the Measured Hydration Heat Development of FGD Gypsum, Journal of Thermal Analysis and Calorimetry, 91, 791-796 (2008).
 
22.
W. Nocuń-Wczelik, T. Wasąg, M. Styczyńska, G. Miklaszewski, Effect of some concrete admixtures on the Portland cement hydration, Cement Wapno Beton, 76, 5, 223-231 (2009).
 
23.
P. Siler, J. Kratky, N. De Belie, Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration, Journal of Thermal Analysis and Calorimetry, 107, 313–320 (2012).
 
24.
C. Pfeifer, B. Moeser, J. Stark, Microstructural Development during Hydration in Ultra-High-Performance Concrete. Cement Wapno Beton, 77, 3, 123-131 (2010).
 
ISSN:1425-8129
Journals System - logo
Scroll to top