Experimental study and mechanism analysis of restraining spalling of high strength concrete with polypropylene micro-fibers
Min Li 1,2
,
 
,
 
,
 
 
 
More details
Hide details
1
Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, China
 
2
Internal Institute for Urban System Engineering, Southeast University, Nanjing, China
 
 
Publication date: 2011-05-01
 
 
Cement Wapno Beton 16(3) 129-138 (2011)
 
ACKNOWLEDGEMENTS
The authors gratefully acknowledge financial support for this research from Major State Basic Research Development Program of China (973Program) (2009CB623203), the National Natural Science Foundation of China (50808042) for youth, and Six Projects Sponsoring Talent Summits of Jiangsu Province (1112000053), the Project-sponsored by SRF for ROCS, SEM. and Key laboratory for concrete and prestressed concrete of Ministry of Education, Southeast University
REFERENCES (21)
1.
A. Bilodeau, V. K. R. Kodur, G. C. Hoff, “Optimization of the type and amount of polypropylene fi bres for preventing the spalling of lightweight concrete subjected to hydrocarbon fi re”, Cem. Concr. Compos., 26 (2), 163-174 (2004).
 
2.
M. Yabuki, MAE-W. Ahmed, T. Ayano, et al., “Fire resistance of polypropylene fi ber reinforce concrete”, J. Soc. Mater. Sci.,51(10), 1123-1128 (In Japanese) (2002).
 
3.
A. Noumowe, “Mechanical properties and microstructure of high strength concrete containing polypropylene fi bres exposed to temperatures up to 200°C”, Cem. Concr. Compos.35 (11), 2192-2198 (2005).
 
4.
B. F. Johannesson, Prestudy on diffusion and transient condensation of water vapor in cement mortar, Cem. Concr. Res. , 32, 955-962 (2002).
 
5.
Cheon-Goo Han, Yin-Seong Hwang, Seong-Hwan Yang and N. Gowripalan, “Performance of spalling resistance of high performance concrete with polypropylene fi ber contents and lateral confi nement”, Cem. Concr. Res. , 35 (9), 1747-1753 (2005).
 
6.
D. Gawin, F. Pesavento, et al., “Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation”, Comput. Method Appl. M., 192 (13), 1731-1771 (2003).
 
7.
D. Gawin, F. Pesavento, B. A. Schrefl er, “Towards prediction of the thermal spalling risk through a multi- phase porous media model of concrete”, Comput. Methods Appl. Mech. Eng., 195 (41), 5707-5729 (2006).
 
8.
D. Laverty, A. Nadjai, et al., “Modeling of Thermo-Structural Response of Concrete Masonry Walls Subjected to Fire”, J. Appl. Fire Sci., 10(1), 3-19 (2000).
 
9.
F. Hernández-Olivaresa, G. Barluengab, “Fire performance of recycled rubber-fi lled high-strength concrete”. Cem. Concr. Res. , 34 (1), 109-117 (2004).
 
10.
F. Vodák, R. Černý, et al., “Thermophysical properties of concrete for nuclear-safety related structures”, Cem. Concr. Res. , 27, 415-426 (1997).
 
11.
G. H. A. van der Heijden, R. M. W. van Bijnen, L. Pel, H. P. Huinink “Moisture transport in heated concrete, as studied by NMR, and its consequences for fi re spalling”, Cem. Concr. Res. , 37 (6), 894-901 (2007).
 
12.
Gamal N. Ahmed, James P. Hurst, “Modeling Pore Pressure, Moisture, and Temperature in High-Strength Concrete Columns Exposed to Fire”, Fire. Tech., 35(3), 232-262 (1999).
 
13.
I. Hager, P. Pimenta, “Effect of polypropylene fi bres on mechanical properties of HPC at high temperature”, Cement Wapno Beton,70, 263- 266 (2003).
 
14.
K. D. Hertz, “Limits of spalling of fi re-exposed concrete”, Fire. Saf. J., 38 (2), 103-116 (2003).
 
15.
K. D. Hertz, L. S. Sörensen, “Test method for spalling of fi re exposed concrete”, Fire. Saf. J., 40(5), 466-476 (2005).
 
16.
Min Li, Chunxiang Qian, Wei Sun, “Mechanical properties of highstrength concrete after fi re”, Cem. Concr. Res., 34, 1001-1005 (2004).
 
17.
Pierre-C. Aïtcin, High Performance Concrete, E &FN Spon, London 1998.
 
18.
Pierre Kalifa, Gregoire Chene, Christophe Galle, “High-temperature behavior of HPC with polypropylene fi bres from spalling to microstructure”, Cem. Concr. Res. , 31 (10), 1487-1499 (2001).
 
19.
L. Powers-Couche, Fire damaged concrete-up close, Concrete Repair Digest, 1, 241-8 (1992).
 
20.
R. Černý, J. Drchalová, “Measuring the moisture diffusivity of board materials”, Proc. of the CIB W40 Meeting, University of Porto, 147-156 (1995).
 
21.
Rami H. Haddad, Linda G. Shannis, “Post-fi re behavior of bond between high strength pozzolanic concrete and reinforcing steel”, Constr. Build. Mater., 18, 425-435 (2004).
 
ISSN:1425-8129
Journals System - logo
Scroll to top