Retraction Notice to Effect of TiO2 nanoparticles on the properties of self compacting concrete
,
 
 
 
More details
Hide details
1
Department of Technical and Engineering Sciences, Islamic Azad University, Saveh Branch, Iran
 
 
Publication date: 2011-05-01
 
 
Cement Wapno Beton 16(3) 167-181 (2011)
 
KEYWORDS
ABSTRACT
Retraction Notice to Effect of TiO2 nanoparticles on the properties of self compacting concrete 16(3)(2011) Concerns: A. Nazari, Cement Wapno Beton 116(3)(2011). By the decision of the Editor-in-Chief, article has been withdrawn from Issue 53 Volume 16 (2011) of the Cement Wapno Beton journal. The withdrawn article contains content borrowed without citation. We would like to apologize to the Readers of Cement Wapno Beton for this situation. We assure You that the Editorial Board makes every effort to avoid such situations. The authors did not respond to messages regarding the withdrawal of the article sent to them by the Editorial Office
REFERENCES (51)
1.
G. Köning, K. Holsechemacher, F. Dehn, D. Weie, Self-compacting concrete-time development of material properties and bond behaviour. In: K. Ozawa, M. Ouchi editors. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Published by COMS Engineering Corporation, p. 507-516, Tokyo 2001.
 
2.
B. Hauke, Self-compacting concrete for precast concrete products in Germany”. In: K. Ozawa, M. Ouchi editors. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Published by COMS Engineering Corporation, p. 633-642. Tokyo 2001.
 
3.
C. Fava, L. Bergol, G. Fornasier, F. Giangrasso, C. Rocco, Fracture behaviour of self –compacting concrete. In: O. Wallevik, I. Nielsson editors. Proceedings of the 3rd international RILEM symposium on self-compacting concrete. RILEM Publications S.A.R.L., p. 628-636, Reykjavik 2003.
 
4.
A. Daoud, M. Lorrain, C. Laborderie, Anchorage and cracking behaviour of self-compacting concrete. In: O. Wallevik, I. Nielsson editors. Proceedings of the 3rd international RILEM symposium on self compacting concrete. RILEM Publications S.A.R.L., p. 692-702, Reykjavik, 2003.
 
5.
V. B. Bosiljkov, SCC mixes with poorly graded aggregate and high volume of limestone fi ller. Cem. Concr. Res. 33, 1279-1286 (2003).
 
6.
O. Makishima, H. Tanaka, Y. Itoh, K. Komada, F. Satoh. Evaluation of mechanical properties and durability of super quality concrete. In: K. Ozawa, M. Ouchi editors. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Published by COMS Engineering Corporation, p. 475-482, Tokyo 2001.
 
7.
Y. Klug, K. Holschemacher, Comparison of the hardened properties of self -compacting and normal vibrated concrete”. In: O. Wallevik, I. Nielsson editors. Proceedings of the 3rd international RILEM symposium on self-compacting concrete. RILEM Publications S.A.R.L., p. 596-605, Reykjavik 2003.
 
8.
D. Chopin, O. Francy, S. Lebourgeois, P. Rougeau, Creep and shrinkage of heat - cured selfcompacting concrete (SCC). In: O. Wallevik, I. Nielsson editors. Proceedings of the 3rd international RILEM symposium on self-compacting concrete. RILEM Publications S.A.R.L., p. 672-683, Reykjavik 2003.
 
9.
B. Felekoðlu, S. Türkel, B. Baradan, Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. 42(4), 1795- 1802, Building and Environment 2007.
 
10.
N. Su, K. Hsu, H. Chai, A simple mix design method for self-compacting concrete. Cem. Concr. Res., 31, 1799-1807 (2001).
 
11.
G. Hans-Ërik, P. Pentti, Properties of SCC-especially early age and long term shrinkage and salt frost resistance. In: Å. Skarendahl, Ö. Petersson editors. Proceedings of the 1st international RILEM symposium on self-compacting concrete. RILEM Publications S.A.R.L., p. 211-225, Stockholm 1999.
 
12.
H. W. Song, K. J. Byun, S. H. Kim, D. H. Choi, Early-age creep and shrinkage in self-compacting concrete incorporating GGBFS. In: K. Ozawa, M. Ouchi editors. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Published by COMS Engineering Corporation, p. 413-422, Tokyo 2001.
 
13.
T. A. Hammer, K. Johansen, Ø. Bjøntegaard, Volume changes as driving forces to self-induced cracking of norwegian SCC. In: K. Ozawa, M. Ouchi editors. Proceedings of the 2nd international RILEM symposium on self-compacting concrete. Published by COMS Engineering Corporation, p. 423-432, Tokyo 2001
 
14.
P. Turcry, A. Loukili, A study of plastic shrinkage of self -compacting concrete. In: O. Wallevik, I. Nielsson editors. Proceedings of the 3rd international RILEM symposium on self–compacting concrete. RILEM Publications S.A.R.L., p. 576-585, Reykjavik 2003.
 
15.
G. Heirman, L. Vandewalle, The infl uence of fi llers on the properties of self-compacting concrete in fresh and hardened state. In: O. Wallevik, I. Nielsson editors. Proceedings of the 3rd international RILEM symposium on self-compacting concrete. RILEM Publications S.A.R.L., p. 606-618, Reykjavik 2003.
 
16.
Y. Qing, Z. Zenan, K. Deyu, C. Rongshen, “Infl uence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume”, Constr. Build. Mat., 21, pp. 539-545 (2007).
 
17.
B. W. Jo, C. H. Kim, G. H. Tae, J. B. Park, “Characteristics of Cement Mortar with Nano-SiO2 Particles”, Constr. Build. Mat., 21, pp. 1351–1355 (2007).
 
18.
B. W. Jo, C. H. Kim, J. H. Lim, “Investigations on the development of powder concrete with nano-SiO2 nanoparticles”, KSCE Journal, 11, No. 1, pp. 37-42 (2007).
 
19.
B. W. Jo, C. H. Kim, J. H. Lim, “Characteristics of Cement Mortar with Nano-SiO2 Particles” ACI Materials Journal, July/August, pp. 404-407 (2007).
 
20.
K. L. Lin, W. C. Changb, D. F. Linc, H. F. Luoc, M. C. Tsai, “Effects of nano-SiO2 and different ash nanoparticle sizes on sludge ash–cement mortar”, Journal of Environmental Management, 88, No. 4, pp. 708-714 (2008).
 
21.
D. F. Lin, K. L. Lin, W. C. Chang, H. L. Luo,M. Q. Cai, “Improvements of nano-SiO2 on sludge/fl y ash mortar” Waste Management, 28, No. 6, pp. 1081-1087 (2008).
 
22.
J. Y. Shih, T. P. Chang, T. C. Hsiao, “Effect of nanosilica on characterization of Portland cement composite”, Cem. Concr. Res., 36, pp. 697-706 (2006).
 
23.
I. Campillo, A. Guerrero, J. S. Dolado, A. Porro, J. A. Ibáñez, S. Goñi, “Improvement of initial mechanical strength by nanoalumina in belite cements”, Materials Letters, 61, pp. 1889-1892 (2007).
 
24.
Z. Li, H. Wang, S. He, Y. Lu, M. Wang, “Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite”, Materials Letters, 60, pp. 356-359 (2006).
 
25.
H. Li, H. Xiao, J. Ou, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cem. Concr. Res., 34, 435-438 (2004).
 
26.
Flores-Velez and Dominguez, Characterization and properties of Portland cement composites incorporating zinc-iron oxide nanoparticles, J. Mater. Sci., 37, 983-988 (2002).
 
27.
A. Nazari, Sh. Riahi, Sh. Riahi, S.F. Shamekhi, A. Khademno, Mechanical properties of cement mortar with Al2O3 nanoparticles. Journal of American Science, 6 (4), 94-97 (2010).
 
28.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, The effects of incorporation Fe2O3 nanoparticles on tensile and fl exural strength of concrete. Journal of American Science, 6 (4), 90-93 (2010).
 
29.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, Improvement the mechanical properties of the concrete by using TiO2 nanoparticles. Journal of American Science, 6 (4), 98-101 (2010).
 
30.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, Embedded TiO2 nanoparticles mechanical properties monitoring in cementitious composites. Journal of American Science, 6 (4), 86-89 (2010).
 
31.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, Benefi ts of Fe2O3 nanoparticles in concrete mixing matrix. Journal of American Science, 6 (4), 102-106 (2010).
 
32.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, Assessment of the effects of the cement paste composite in presence TiO2 nanoparticles. Journal of American Science, 6 (4), 43-46 (2010).
 
33.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, An investigation on the Strength and workability of cement based concrete performance by using TiO2 nanoparticles. Journal of American Science, 6 (4), 29-33 (2010).
 
34.
A. Nazari, Sh. Riahi, Sh. Riahi, S. F. Shamekhi, A. Khademno, Infl uence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. Journal of American Science, 6 (5), 6-9 (2010).
 
35.
H. Li, M. H. Zhang, J. P. Ou, “Flexural fatigue performance of concrete containing nano-nanoparticles for pavement”, International Journal of Fatigue, 29, pp. 1292-1301 (2007).
 
36.
H. Li, M. H. Zhang, J. P. Ou, “Abrasion resistance of concrete containing nano-nanoparticles for pavement”, Wear Journal, 260, pp. 1262-1266 (2006).
 
37.
N. K. Katyal, S. C. Ahluwalia, Ram Parkash, “Effect of TiO2 on the hydration of tricalcium silicate”, Cem. Concr. Res. 29, 1851-1855 (1999).
 
38.
ASTM C150, Standard Specifi cation for Portland Cement, annual book of ASTM standards, ASTM, Philadelphia, PA, 2001.
 
39.
V. Zivica, Effects of the very low water/cement ratio. Const. Build. Mat., 23, 2846-2850 (2009).
 
40.
ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM, Philadelphia, PA, 2001.
 
41.
A. B. Abell, K. L. Willis, D. A. Lange, Mercury Intrusion Porosimetry and Image nalysis of Cement-Based Materials. Journal of Colloid and Interface Science, 211, 39-44 (1999).
 
42.
K. Tanaka, K. Kurumisawa, Development of technique for observing pores in hardened cement paste. Cem. Concr. Res., 32, 1435-41 (2002).
 
43.
J. Roncero, R. Gettu, Infl uencia de los superplastifi cantes en la microestructura de la pasta hidratada y en el comportamiento diferido de los morteros de cemento. Cemento Hormigón, 832, 12-28 (2002).
 
44.
G. Ye, X. Xiu, G. De Schutter, A. M. Poppe, L. Taerwe, Infl uence of limestone powder as fi ller in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, 29 (2), 94-102 (2007).
 
45.
F. Puertas, M. M. Alonso, T. Vázquez, Effect of polycarboxylate admixtures on portland cement paste setting and rheological behaviour. Materiales de Construcción, 55 (277), 61-73 (2005).
 
46.
F. Puertas, H. Santos, M. Palacios, S. Martínez-Ramírez, Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour. Advances in Cement Research, 17 (2), 77-89 (2005).
 
47.
F. Puertas, H. Santos, M. Palacios, S. Martínez-Ramírez, Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour. Advances in Cement Research, 17, 77-89 (2005).
 
48.
J. Jawed, J. Skalny, J. F. Young, Hydration of Portland Cement. Structure and Performance of Cements, P. Barnes (ed.). Applied Science Publishers, pp. 284-285, Essex 1983.
 
49.
H. Li, M. Zhang, J. Ou, Flexural fatigue performance of concrete containing nanoparticles for pavement, Int. J. Fatigue, 29, 1292-1301 (2007).
 
50.
Q. Ye, The study and development of the nano-composite cement structure materials. New building materials, 1, 4-6 (2001).
 
51.
N. K. Katyal, S. C. Ahluwalia, R. Parkash, G. Samuel, Infl uence of titania on the formation of tricalcium silicate, Cem. Concr. Res., 29, 355- 359M (1999).
 
ISSN:1425-8129
Journals System - logo
Scroll to top