Retraction Notice to The influence of Al2O3 nanoparticles on the properties of traditional concrete with ground granulated blastfurnace slag as binder
 
More details
Hide details
1
Department of Materials Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
 
 
Publication date: 2011-11-01
 
 
Cement Wapno Beton 16(6) 311-322 (2011)
 
ABSTRACT
Retraction Notice to Concerns: A. Nazari, Cement Wapno Beton 16(6) (2011) . By the decision of the Editor-in-Chief, article has been withdrawn from Issue 6 Volume 16 (2011) of the Cement Wapno Beton journal. The withdrawn article contains content borrowed without citation. We would like to apologize to the Readers of Cement Wapno Beton for this situation. We assure You that the Editorial Board makes every effort to avoid such situations. The authors did not respond to messages regarding the withdrawal of the article sent to them by the Editorial Office.
 
REFERENCES (64)
1.
C. Shi, J. Qian, High performance cementing materials from industrial slags: a review, Resour. Conserv. Recycl., 29, 195–207 (2000).
 
2.
M. A. Smith, Resour., Policy 1 (1975).
 
3.
R. J. Collins, S. K. Ciesielski, Recycling and Use of Waste Materials and By-Products in Highway Construction. National Cooperative Highway Research Program Synthesis of Highway Practice 199, Transportation Research Board, Washington, DC 199.
 
4.
I. Afrani, C. Rogers, The Effects of Different Cementing Materials and Curing on Concrete Scaling, Cement Concrete and Aggregates, December 1994.
 
5.
V. M. Malhotra, Properties of fresh and hardened concrete incorporating ground granulated blast furnace slag, in: V.M. Malhotra (Ed.), Supplementary Cementing Materials for Concrete, Minister of Supply and Services, pp. 291–336, Canada 1987.
 
6.
K. Isozaki, Some properties of alkali-activated slag cements, CAJ Rev., 120–123 (1986).
 
7.
Y. Deng, X. Wu, M. Tang, High strength alkali-slag cement, J. Nanjing Inst. Chem. Technol., 11, 1–7 (1989).
 
8.
C. Shi, X.Wu, M. Tang, Hydration of alkali-slag cements at 150o C, Cem. Concr. Res., 21, 91–100 (1991).
 
9.
J. Deja, J. Malolepszy, Resistance of alkali-activated slag mortars to chloride solution, in: Proceedings of the Third International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, SP114, pp. 1547–1561, American Concrete Institute, Norway, Chicago 1989.
 
10.
C. Shi, X. Shen, X. Wu, M. Tang, Immobilization of radioactivewastes with Portland and alkali-slag cement pastes, Cemento 91, 97–108 (1994).
 
11.
Siliceous by-products for use in concrete, Final report of the 73 BSC RILEM Committee, 1988.
 
12.
M. M. Sohaib, S. A. Ahmed, M. M. Balaha, Effect of fi re and cooling mode on the properties of slag mortars, Cem. Concr. Res., 31, 1533–1538 (2001).
 
13.
R. J. Detwiler, C. A. Fapohunda, J. Natale, Use of supplementary cementing materials to increase the resistance to chloride ion penetration of concretes cured at elevated temperatures, ACI Mater. J., 91, 63–66 (1994).
 
14.
T. Ramlochan, P. Zacarias, M. D. A. Thomas, R. D. Hooton, The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: part I expansive behaviour, Cem. Concr. Res., 33, 807–814 (2003).
 
15.
R. F. Bleszynski, R. D. Hooton, M. D. A. Thomas, C. A. Rogers, Durability of ternary blend concretes with silica fume and blast furnace slag: laboratory and outdoor exposure site studies, ACI Mater. J., 99, 499–508 (2002).
 
16.
J. Bjornstrom, A. Martinelli, A. Matic, L. Borjesson, I. Panas, Accelerating effects of colloidal nano-silica for benefi cial calcium–silicate–hydrate formation in cement, Chem. Phys. Lett., 392, 242–248 (2004).
 
17.
T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cem. Concr. Res. 35, 1943–1947 (2005).
 
18.
B. W. Jo, C.-H. Kim, G.-H. Tae, J.-B. Park, Characteristics of cement mortar with nano-SiO2 particles, Construct. Build. Mater., 21, 1351–1355 (2007).
 
19.
H. Li, H.-G. Xiao, J.-P. Ou, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cem. Concr. Res., 34, 435–438 (2004).
 
20.
H. Li, M.-H. Zhang, J.-P. Ou, Abrasion resistance of concrete containing nanoparticles for pavement, Wear, 260, 1262–1266 (2006).
 
21.
Y. Qing, Z. Zenan, K. Deyu, C. Rongshen, Infl uence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construct. Build. Mater., 21, 3, 539–545 (2007).
 
22.
K. L. Lin, W. C. Chang, D. F. Lin, H. L. Luo, M. C. Tsai, Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar, J. Environ Manage, 88, 708–714 (2008).
 
23.
D. F. Lin, K. L. Lin, W. C. Chang, H. L. Luo, M. Q. Cai, Improvements of nano-SiO2 on sludge/fl y ash mortar, Waste Manage, 28, 1081–1087 (2008).
 
24.
K. Sobolev, I. Flores, L. M. Torres-Martinez, P. L. Valdez, E. Zarazua, E. L. Cuellar, Engineering of SiO2 nanoparticles for optimal performance in nano cementbased materials, In: Z. Bittnar, P. J. M. Bartos, J. Nemecek, V. Smilauer, J. Zeman, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction), p. 139-148, Prague, Czech Republic 2009.
 
25.
Y. Qing, Z. Zenan, S. Li, C. Rongshen, A comparative study on the pozzolanic activity between nano-SiO2 and silica fume, J. Wuhan Univ. Technol. – Mater. Sci. Ed., 21, 153–157 (2008).
 
26.
K. Sobolev, M. Ferrada-Gutiérrez, How nanotechnology can change the concrete world: part 2. Am. Ceram. Soc. Bull., 84, 16–19 (2005).
 
27.
H. Li, M.-H. Zhang, J.-P. Ou, Flexural fatigue performance of concrete containing nano-particles for pavement, Int. J. Fatig., 29, 1292–1301 (2007).
 
28.
Z. Li, H. Wang, S. He, Y. Lu, M. Wang, Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite, Mater. Lett., 60, 356–359 (2006).
 
29.
E. J. Garboczi, D. P. Bentz, Modelling of the microstructure and transport properties of concrete, Construct. Build. Mater., 10, 293–300 (1996).
 
30.
T.-P. Chang, J.-Y. Shih, K.-M. Yang, T.-C. Hsiao, Material properties of Portland cement paste with nano-montmorillonite, J. Mater. Sci., 42, 7478–7487 (2007).
 
31.
W.-Y. Kuo, J.-S. Huang, C.-H. Lin, Effects of organo-modifi ed montmorillonite on strengths and permeability of cement mortars, Cem. Concr. Res., 36, 886–895 (2006).
 
32.
A. Nazari, S. Riahi, Microstructural, thermal, physical and mechanical behaviour of the self compacting concrete containing SiO2 nanoparticles, Mater. Sci. Eng. A., 527, 7663–7672 (2010).
 
33.
A. Nazari, S. Riahi, The Effects of TiO2 Nanoparticles on Flexural Damage of Self-compacting Concrete, Int. J. Damage. Mech., 20, 1049- 1072 (2011).
 
34.
A. Nazari, S. Riahi, The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete, Mater. Sci. Eng. A., 528, 756-763 (2010).
 
35.
A. Nazari, S. Riahi, TiO2 nanoparticles’ effects on properties of self compacting concrete, Cement Wapno Beton, 3, 167-181 (2011).
 
36.
A. Nazari, S. Riahi, The effects of zinc dioxide nanoparticles on fl exural strength of self-compacting concrete, Composites Part B: Engineering, 42, 167-175 (2011).
 
37.
A. Nazari, S. Riahi, Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles, Energy Build, 43, 1977-1984 (2011).
 
38.
A. Nazari, S. Riahi, Limewater effects on properties of ZrO2 nanoparticle blended cementitious composite, J. Compos. Mater., 45, 639-644 (2011).
 
39.
A. Nazari, S. Riahi, Assessment of the effects of Fe2O3 nanoparticles on water permeability, workability, and setting time of concrete, J. Compos. Mater., 45, 923-930 (2011).
 
40.
A. Nazari, S. Riahi, The effects of limewater on fl exural strength and water permeability of Al2O3 nanoparticles binary blended concrete, J. Compos. Mater., 45, 1165-1172 (2011).
 
41.
A. Nazari, S. Riahi, The effects of limewater on split tensile strength and workability of Al2O3 nanoparticles binary blended concrete, J. Compos. Mater., 45, 1059-1064 (2011).
 
42.
A. Nazari, S. Riahi, The effects of TiO2 nanoparticles on properties of binary blended concrete, J. Compos. Mater. 45, 1181-1188 (2011).
 
43.
A. Nazari, S. Riahi, Optimization mechanical properties of Cr2O3 nanoparticle binary blended cementitious composite, J. Compos. Mater., 45, 943-948 (2011).
 
44.
ASTM C150, Standard Specifi cation for Portland Cement, annual book of ASTM standards, ASTM, Philadelphia, PA 2001.
 
45.
ASTM C39, Standard Test Method for Flexural Strength of Cylindrical Concrete Specimens, ASTM, Philadelphia, PA 2001.
 
46.
A. B. Abell, K. L. Willis, D. A. Lange, Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials, Journal of Colloid and Interface Science, 211, 39-44 (1999).
 
47.
K. Tanaka, K. Kurumisawa, Development of technique for observing pores in hardened cement paste, Cem. Concr. Res., 32, 1435-1441 (2002).
 
48.
J. Roncero, R. Gettu, Infl uencia de los superplastifi cantes en la microestructura de la pasta hidratada y en el comportamiento diferido de los morteros de cement, Cemento Hormigón, 832, 12-28 (2002).
 
49.
G. Hans-Ërik, P. Pentti, Properties of SCC-especially early age and long term shrinkage and salt frost resistance, In: Å. Skarendahl, Ö. Petersson editors, Proceedings of the 1st international RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., p. 211-225, Stockholm 1999.
 
50.
H. W. Song, K. J. Byun, S. H. Kim, D. H. Choi, Early-age creep and shrinkage in self-compacting concrete incorporating GGBFS, In: K. Ozawa, M. Ouchi editors, Proceedings of the 2nd international RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, p. 413-422, Tokyo 2001.
 
51.
T. A. Hammer, K. Johansen, Ø. Bjøntegaard, Volume changes as driving forces to self-induced cracking of Norwegian SCC, In: K. Ozawa, M. Ouchi editors, Proceedings of the 2nd international RILEM symposium on self-compacting concrete, Published by COMS Engineering Corporation, p. 423-432, Tokyo 2001.
 
52.
P. Turcry, A. Loukili, A study of plastic shrinkage of self -compacting concrete, In: O. Wallevik, I. Nielsson editors, Proceedings of the 3rd international RILEM symposium on self –compacting concrete, RILEM Publications S.A.R.L., p. 576-585, Reykjavik 2003.
 
53.
G. Heirman, L. Vandewalle, The infl uence of fi llers on the properties of self-compacting concrete in fresh and hardened state, In: O. Wallevik, I. Nielsson editors, Proceedings of the 3rd international RILEM symposium on self-compacting concrete, RILEM Publications S.A.R.L., p. 606-618, Reykjavik 2003.
 
54.
G. Ye, X. Xiu, G. De Schutter, A. M. Poppe, L. Taerwe, Infl uence of limestone powder as fi ller in SCC on hydration and microstructure of cement pastes, Cem. Concr. Comp., 29, 2, 94-102 (2007).
 
55.
C. Arya, Y. Xu, Effect of cement type on chloride binding and corrosion of steel in concrete, Cem. Concr. Res., 25, 4, 893–902 (1995).
 
56.
R. B. Polder, de Rooij, Durability of marine concrete structures—fi eld investigations and modelling, Heron 50, 3, 133 (2005).
 
57.
G. K. Glass, B. Reddy, N. R. Buenfeld, Corrosion inhibition in concrete arising from its acid neutralization capacity, Corros. Sci. 42, 1587 (2000).
 
58.
P. A. M. Basheer, P. R. V. Gilleece, A. E. Long, W. J. McCarter, Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration, Cem. Concr. Compos. 24, 437 (2002).
 
59.
F. Puertas, H. Santos, M. Palacios, S. Martínez-Ramírez, Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour, Adv. in Cem. Res., 17, 2, 77-89 (2005).
 
60.
J. Jawed, J. Skalny, J. F. Young, Hydration of Portland Cement, Structure and Performance of Cements, P. Barnes ed., Applied Science Publishers, pp. 284–285, Essex 1983.
 
61.
S. Grzeszczyk, G. Lipowski, Effect of content and particle size distribution of high calcium fl y ash on the rheological properties of cement pastes, Cem. Concr. Res., 27, 6, 907–916 (1997).
 
62.
E. Fernandez, F. J. Gil, M. P. Ginebra, F. C. M. Driessens, J. A. Planell, S. M. Best, Production and characterisation of new calcium phosphate bone cements in the CaHPO4-a-Ca3(PO4)2 system: pH, workability and setting times, J. Mater. Sci. Mater. Med., 10, 223–230 (1999).
 
63.
F. Massazza, The role of the additions to cement in the concrete durability, Cemento 84 (October-December), 359-382 (1987).
 
64.
National Material Advisory Board, Concrete durability: A multi-billion dollar opportunity, NMAB-437, Washington: National Academy Press 1987.
 
ISSN:1425-8129
Journals System - logo
Scroll to top