The analyse of the reactive powders concrete application possibility in a bridge structure
 
More details
Hide details
1
Politechnika Opolska
 
2
Politechnika Krakowska
 
 
Publication date: 2018-11-01
 
 
Cement Wapno Beton 23(6) 496-510 (2018)
 
KEYWORDS
ACKNOWLEDGEMENTS
The authors would like to thank Prof. Stefani Grzeszczyk and PhD Aneta Matuszek-Chmurowska from the Building Materials Laboratory of the Department of Building Materials Engineering, Opole University of Technology, for providing concrete test results of RPC.
 
REFERENCES (25)
1.
P. Richard, M. Cheyrezy, Composition of reactive powder concretes. Cement and Concrete Reasearch, 25, 1501-1511, (1995).
 
2.
J. D. Birchall, Cement in the contest of new materials for an energyexpensive future, Phil. Trans. R. Soc. Lond., 1983, A310, 31-39.
 
3.
Y.-W. Chan, S.-H. Chu, Effect of silica fume on steel fi ber bond characteristic in reactive powder concrete. Cem. Concr. Res., 34, 1167-1172, (2004).
 
4.
A.M. Neville, Właściwości betonu, Stowarzyszenie Producentów Cementu, Kraków (2012).
 
5.
P.-C. Aitcin, The art and science of durable high-performance concrete. Conference Concrete on the eve of the New Millenium 2000, Polish Cement Association, Cracow, 2000.
 
6.
A. Nonat, C-S-H i właściwości betonu. Cement Wapno Beton 6, 65-73, (2010).
 
7.
Locher F.M., Richartz., 6th ICCC Moskwa, t. II/1, s. 122, Moskwa 1974.
 
8.
Y.-W. Chan, S.-H. Chu, Effect of silica fume on steel fi ber bond characteristic in reactive powder concrete. Cem. Concr. Res., 34, 1167-1172, (2004).
 
9.
D.Y. Yoo, N. Banthia, Mechanical properties of ultra-high-performance fi ber-reinforced concrete: A review Cement and Concrete Composites, 73, 267-280, (2016).
 
10.
S. Yu , L. Jun, W. Chengqing, W. Pengtao, L. Zhong-Xian Effects of steel fi bres on dynamic strength of UHPC Construction and Building Materials 114, 708–718, (2016).
 
11.
C.M. Tam, V.W. Tam, K.M. Ng, Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong, Constr. Build. Mater 26 (1), 79- 89, (2012).
 
12.
S. Rigaud, G. Chanvillard, J. Chen, Characterization of bending andtensile behavior of ultra-high performance concrete containing glass fi bers, in: G. Parra-Montesinos, H. Reinhardt, A.E. Naaman (Eds.), High Performance Fiber Reinforced Cement Composites 6, Springer, Netherlands, 373–380, (2012).
 
13.
B. Stankiewicz, Composite material GFRP and Ductal in decks of bridge structures. Journal of Materials Science and Engineering A, 4 (9), 282-289, (2014).
 
14.
Blais R.Y., Couture M., Prestressed Pedestrian Bridge – World’s Frist Reactive Powder Concrete Structure, PCI Journal, 1999.
 
15.
E. Fehling, K. Bunje, M. Schmidt, Gärtnerplatz – bridge over river Fulda in Kassel: multispan hybrid UHPC-steel bridge, in: Designing and Building with UHPFRC, John Wiley & Sons, Inc., 0–136, (2013).
 
16.
Gärtnerplatz Bridge in Kassel, Sika at Work, 4, (2007).
 
18.
W.J. Chin, Y.J. Kim, J.-R. Cho, J.S. Park, Dynamic Characteristics Evaluation of Innovative UHPC Pedestrian Cable Stayed Bridge, Engineering, 4, 869-876, (2012).
 
19.
S. Grzeszczyk, A. Matuszek-Chmurowska, R. Cerny, E. Vejmelkova, Mikrostruktura betonów z proszków reaktywnych, Cement Wapno Beton 1, 1-15, (2018).
 
20.
N. Gowripalan, R. I. Gilbert, Design Guidelines for Ductal Prestressed Concrete Beams (2000).
 
21.
A. Rabiniak, Modularna kładka sprężona z betonu Ductal®. Praca dyplomowa pod kierunkiem W. Średniawy, Politechnika Krakowska (2017).
 
22.
B. Stankiewicz, Kompozyty cementowe Ductal w konstrukcjach mostowych. Mosty 6, 50-54, (2015).
 
23.
A. Spasojevic, Structural implications of ultra-bridge performance fi brereinforced concrete in bridge design. These No 4051, Ecole Polytechnique Federale de Lausanne (2008).
 
24.
Hannant D.J., Fibre Cements and Fibre Concretes, John Wiley and Sons, Chichester 1978.
 
25.
Powers T., Proc. Conf. Structure of Concrete and its Behaviour under Load, p. 319, Cem.Concr. Ass., London 1968.
 
ISSN:1425-8129
Journals System - logo
Scroll to top